
Invoke

unknown

Sep 23, 2023

CONTENTS

1 Getting started 3
1.1 Getting started . 3

2 The invoke CLI tool 9
2.1 inv[oke] core usage . 9

3 Concepts 15
3.1 Configuration . 15
3.2 Invoking tasks . 22
3.3 Using Invoke as a library . 31
3.4 Loading collections . 35
3.5 Constructing namespaces . 36
3.6 Testing Invoke-using codebases . 44
3.7 Automatically responding to program output . 49

4 API 51
4.1 __init__ . 51
4.2 collection . 51
4.3 config . 54
4.4 context . 61
4.5 exceptions . 66
4.6 executor . 70
4.7 loader . 72
4.8 parser . 73
4.9 program . 77
4.10 runners . 80
4.11 tasks . 93
4.12 terminals . 97
4.13 util . 98
4.14 watchers . 100

Python Module Index 103

Index 105

i

ii

Invoke

This site covers Invoke’s conceptual & API documentation. For basic info on what Invoke is, including its public
changelog & how the project is maintained, please see the main project website.

CONTENTS 1

https://pyinvoke.org

Invoke

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

Many core ideas & API calls are explained in the tutorial/getting-started document:

1.1 Getting started

This document presents a whirlwind tour of Invoke’s feature set. Please see the links throughout for detailed conceptual
& API docs. For installation help, see the project’s installation page.

1.1.1 Defining and running task functions

The core use case for Invoke is setting up a collection of task functions and executing them. This is pretty easy – all you
need is to make a file called tasks.py importing the task decorator and decorating one or more functions. You will
also need to add an arbitrarily-named context argument (convention is to use c, ctx or context) as the first positional
arg. Don’t worry about using this context parameter yet.

Let’s start with a dummy Sphinx docs building task:

from invoke import task

@task
def build(c):

print("Building!")

You can then execute that new task by telling Invoke’s command line runner, invoke, that you want it to run:

$ invoke build
Building!

The function body can be any Python you want – anything at all.

3

https://www.pyinvoke.org/installing.html

Invoke

1.1.2 Task parameters

Functions can have arguments, and thus so can tasks. By default, your task functions’ args/kwargs are mapped auto-
matically to both long and short CLI flags, as per the CLI docs. For example, if we add a clean argument and give it
a boolean default, it will show up as a set of toggle flags, --clean and -c:

@task
def build(c, clean=False):

if clean:
print("Cleaning!")

print("Building!")

Invocations:

$ invoke build -c
$ invoke build --clean

Naturally, other default argument values will allow giving string or integer values. Arguments with no default values
are assumed to take strings, and can also be given as positional arguments. Take this incredibly contrived snippet for
example:

@task
def hi(c, name):

print("Hi {}!".format(name))

It can be invoked in the following ways, all resulting in “Hi Name!”:

$ invoke hi Name
$ invoke hi --name Name
$ invoke hi --name=Name
$ invoke hi -n Name
$ invoke hi -nName

Adding metadata via @task

@task can be used without any arguments, as above, but it’s also a convenient vector for additional metadata about
the task function it decorates. One common example is describing the task’s arguments, via the help parameter (in
addition to optionally giving task-level help via the docstring):

@task(help={'name': "Name of the person to say hi to."})
def hi(c, name):

"""
Say hi to someone.
"""
print("Hi {}!".format(name))

This description will show up when invoking --help:

$ invoke --help hi
Usage: inv[oke] [--core-opts] hi [--options] [other tasks here ...]

Docstring:
Say hi to someone.

(continues on next page)

4 Chapter 1. Getting started

Invoke

(continued from previous page)

Options:
-n STRING, --name=STRING Name of the person to say hi to.

More details on task parameterization and metadata can be found in Invoking tasks (for the command-line & parsing
side of things) and in the task API documentation (for the declaration side).

1.1.3 Listing tasks

You’ll sometimes want to see what tasks are available in a given tasks.py – invoke can be told to list them instead
of executing something:

$ invoke --list
Available tasks:

build

This will also print the first line of each task’s docstring, if it has one. To see what else is available besides --list,
say invoke --help.

1.1.4 Running shell commands

Many use cases for Invoke involve running local shell commands, similar to programs like Make or Rake. This is done
via the run function:

from invoke import task

@task
def build(c):

c.run("sphinx-build docs docs/_build")

You’ll see the command’s output in your terminal as it runs:

$ invoke build
Running Sphinx v1.1.3
loading pickled environment... done
...
build succeeded, 2 warnings.

run has a number of arguments controlling its behavior, such as activation of pseudo-terminals for complex programs
requiring them, suppression of exit-on-error behavior, hiding of subprocess’ output (while still capturing it for later
review), and more. See its API docs for details.

run always returns a useful Result object providing access to the captured output, exit code, and other information.

1.1. Getting started 5

Invoke

Aside: what exactly is this ‘context’ arg anyway?

A common problem task runners face is transmission of “global” data - values loaded from configuration files or other
configuration vectors, given via CLI flags, generated in ‘setup’ tasks, etc.

Some libraries (such as Fabric 1.x) implement this via module-level attributes, which makes testing difficult and error
prone, limits concurrency, and increases implementation complexity.

Invoke encapsulates state in explicit Context objects, handed to tasks when they execute . The context is the primary
API endpoint, offering methods which honor the current state (such as Context.run) as well as access to that state
itself.

1.1.5 Declaring pre-tasks

Tasks may be configured in a number of ways via the task decorator. One of these is to select one or more other tasks
you wish to always run prior to execution of your task, indicated by name.

Let’s expand our docs builder with a new cleanup task that runs before every build (but which, of course, can still be
executed on its own):

from invoke import task

@task
def clean(c):

c.run("rm -rf docs/_build")

@task(clean)
def build(c):

c.run("sphinx-build docs docs/_build")

Now when you invoke build, it will automatically run clean first.

Note: If you’re not a fan of the implicit “positional arguments are pre-run task names” API, you can instead explicitly
give the pre kwarg: @task(pre=[clean]).

Details can be found in How tasks run.

1.1.6 Creating namespaces

Right now, our tasks.py is implicitly for documentation only, but maybe our project needs other non-doc things, like
packaging/deploying, testing, etc. At that point, a single flat namespace isn’t enough, so Invoke lets you easily build a
nested namespace. Here’s a quick example.

Let’s first rename our tasks.py to be docs.py; no other changes are needed there. Then we create a new tasks.py,
and for the sake of brevity populate it with a new, truly top level task called deploy.

Finally, we can use a new API member, the Collection class, to bind this task and the docs module into a single
explicit namespace. When Invoke loads your task module, if a Collection object bound as ns or namespace exists
it will get used for the root namespace:

from invoke import Collection, task
import docs

(continues on next page)

6 Chapter 1. Getting started

https://fabfile.org

Invoke

(continued from previous page)

@task
def deploy(c):

c.run("python setup.py sdist")
c.run("twine upload dist/*")

namespace = Collection(docs, deploy)

The result:

$ invoke --list
Available tasks:

deploy
docs.build
docs.clean

For a more detailed breakdown of how namespacing works, please see the docs.

1.1. Getting started 7

Invoke

8 Chapter 1. Getting started

CHAPTER

TWO

THE INVOKE CLI TOOL

Details on the CLI interface to Invoke, available core flags, and tab completion options.

2.1 inv[oke] core usage

See also:
This page documents invoke’s core arguments, options and behavior (which includes options present in custom Invoke-
based binaries). For details on invoking user-specified tasks and other parser-related details, see Invoking tasks.

2.1.1 Core options and flags

invoke’s usage looks like:

$ inv[oke] [--core-opts] task1 [--task1-opts] ... taskN [--taskN-opts]

All core options & flags are below; almost all of them must be given before any task names, with a few (such as --help)
being specially looked for anywhere in the command line. (For parsing details, see Basic command line layout.)

--complete
Print (line-separated) valid tab-completion options for an Invoke command line given as the ‘remainder’ (i.e.
after a --). Used for building shell completion scripts.

For example, when the local tasks tree contains tasks named foo and bar, and when foo takes flags --foo-arg
and --foo-arg-2, you might use it like this:

Empty input: just task names
$ inv --complete --
foo
bar

Input not ending with a dash: task names still
$ inv --complete -- foo --foo-arg
foo
bar

Input ending with a dash: current context's flag names
$ inv --complete -- foo -
--foo-arg
--foo-arg-2

9

Invoke

For more details on how to make best use of this option, see --print-completion-script.

--hide=STRING
Set default value of run()’s ‘hide’ kwarg.

--no-dedupe
Disable task deduplication.

--print-completion-script=SHELL
Print a completion script for desired SHELL (e.g. bash, zsh, etc). This can be sourced into the current session
in order to enjoy tab-completion for tasks and options.

These scripts are bundled with Invoke’s distributed codebase, and internally make use of --complete.

--prompt-for-sudo-password
Prompt at the start of the session (before executing any tasks) for the sudo.password configuration value. This
allows users who don’t want to keep sensitive material in the config system or their shell environment to rely on
user input, without otherwise interrupting the flow of the program.

--write-pyc
By default, Invoke disables bytecode caching as it can cause hard-to-debug problems with task files and (for the
kinds of things Invoke is typically used for) offers no noticeable speed benefit. If you really want your .pyc files
back, give this option.

-c STRING, --collection=STRING
Specify collection name to load.

-d, --debug
Enable debug output.

--dry
Echo commands instead of actually running them; specifically, causes any run calls to:

• Act as if the echo option has been turned on, printing the command-to-be-run to stdout;

• Skip actual subprocess invocation (returning before any of that machinery starts running);

• Return a dummy Result object with ‘blank’ values (empty stdout/err strings, 0 exit code, etc).

-D, --list-depth=INT
Limit --list display to the specified number of levels, e.g. --list-depth 1 to show only top-level tasks and
namespaces.

If an argument is given to --list, then this depth is relative; so --list build --list-depth 1 shows
everything at the top level of the build subtree.

Default behavior if this is not given is to show all levels of the entire task tree.

-e, --echo
Echo executed commands before running.

-f, --config
Specify a runtime configuration file to load.

Note that you may instead use the INVOKE_RUNTIME_CONFIG environment variable in place of this option. If
both are given, the CLI option will win out.

-F, --list-format=STRING
Change the format used to display the output of --list; may be one of:

• flat (the default): single, flat vertical list with dotted task names.

• nested: a nested (4-space indented) vertical list, where each level implicitly includes its parent (with
leading dots as a strong visual clue that these are still subcollection tasks.)

10 Chapter 2. The invoke CLI tool

Invoke

• json: intended for consumption by scripts or other programs, this format emits JSON representing the task
tree, with each ‘node’ in the tree (the outermost document being the root node, and thus a JSON object)
consisting of the following keys:

– name: String name of collection; for the root collection this is typically the module name, so unless
you’re supplying alternate collection name to the load process, it’s usually "tasks" (from tasks.py.)

– help: First line of collection’s docstring, if it came from a module; null otherwise (or if module lacked
a docstring.)

– tasks: Immediate children of this collection; an array of objects of the following form:

∗ name: Task’s local name within its collection (i.e. not the full dotted path you might see with the
flat format; reconstructing that path is left up to the consumer.)

∗ help: First line of task’s docstring, or null if it had none.

∗ aliases: An array of string aliases for this task.

– default: String naming which task within this collection, if any, is the default task. Is null if no task
is the default.

– collections: An array of any sub-collections within this collection, members of which which will
have the same structure as this outermost document, recursively.

The JSON emitted is not pretty-printed, but does end with a trailing newline.

-h STRING, --help=STRING
When given without any task names, displays core help; when given with a task name (may come before or after
the task name) displays help for that particular task.

-l, --list=STRING
List available tasks. Shows all tasks by default; may give an explicit namespace to ‘root’ the displayed task tree
to only that namespace. (This argument may contain periods, as with task names, so it’s possible to show only a
small, deep portion of the overall tree if desired.)

-p, --pty
Use a pty when executing shell commands.

-r STRING, --search-root=STRING
Change root directory used for finding task modules.

-T INT, --command-timeout=INT
Set a default command execution timeout of INT seconds. Maps to the timeouts.command config setting.

-V, --version
Show version and exit.

-w, --warn-only
Warn, instead of failing, when shell commands fail.

2.1.2 Shell tab completion

Generating a completion script

Invoke’s philosophy is to implement generic APIs and then “bake in” a few common use cases built on top of those APIs;
tab completion is no different. Generic tab completion functionality (outputting a shell-compatible list of completion
tokens for a given command line context) is provided by the --complete core CLI option described above.

However, you probably won’t need to use that flag yourself: we distribute a handful of ready-made wrapper scripts
aimed at the most common shells like bash and zsh (plus others). These scripts can be automatically generated from

2.1. inv[oke] core usage 11

Invoke

Invoke or any Invoke-driven command-line tool, using --print-completion-script; the printed scripts will contain
the correct binary name(s) for the program generating them.

For example, the following command prints (to stdout) a script which works for zsh, instructs zsh to use it for the inv
and invoke programs, and calls invoke --complete at runtime to get dynamic completion information:

$ invoke --print-completion-script zsh

Note: You’ll probably want to source this command or store its output somewhere permanently; more on that in the
next section.

Similarly, the Fabric tool inherits from Invoke, and only has a single binary name (fab); if you wanted to get Fabric
completion in bash, you would say:

$ fab --print-completion-script bash

In the rest of this section, we’ll use inv in examples, but please remember to replace it with the program you’re actually
using, if it’s not Invoke itself!

Sourcing the script

There are a few ways to utilize the output of the above commands, depending on your needs, where the program is
installed, and your shell:

• The simplest and least disruptive method is to source the printed completion script inline, which doesn’t place
anything on disk, and will only affect the current shell session:

$ source <(inv --print-completion-script zsh)

• If you’ve got the program available in your system’s global Python interpreter (and you’re okay with running the
program at the startup of each shell session - Python’s speed is admittedly not its strong point) you could add
that snippet to your shell’s startup file, such as ~/.zshrc or ~/.bashrc.

• If the program’s available globally but you’d prefer to avoid running an extra Python program at shell startup,
you can cache the output of the command in its own file; where this file lives is entirely up to you and how your
shell is configured. For example, you might just drop it into your home directory as a hidden file:

$ inv --print-completion-script zsh > ~/.invoke-completion.sh

and then perhaps add the following to the end of ~/.zshrc:

source ~/.invoke-completion.sh

But again, this is entirely up to you and your shell.

Note: If you’re using fish, you must use this tactic, as our fish completion script is not suitable for direct sourc-
ing. Fish shell users should direct the output of the command to a file in the ~/.config/fish/completions/
directory.

• Finally, if your copy of the needing-completion program is only installed in a specific environment like a vir-
tualenv, you can use either of the above techniques:

– Caching the output and referencing it in a global shell startup file will still work in this case, as it does not
require the program to be available when the shell loads – only when you actually attempt to tab complete.

12 Chapter 2. The invoke CLI tool

https://fabfile.org

Invoke

– Using the source <(inv --print-completion-script yourshell) approach will work as long as
you place it in some appropriate per-environment startup file, which will vary depending on how you man-
age Python environments. For example, if you use virtualenvwrapper, you could append the source
line in /path/to/virtualenv/bin/postactivate.

Utilizing tab completion itself

You’ve ensured that the completion script is active in your environment - what have you gained?

• By default, tabbing after typing inv or invoke will display task names from your current directory/project’s
tasks file.

• Tabbing after typing a dash (-) or double dash (--) will display valid options/flags for the current context: core
Invoke options if no task names have been typed yet; options for the most recently typed task otherwise.

– Tabbing while typing a partial long option will complete matching long options, using your shell’s na-
tive substring completion. E.g. if no task names have been typed yet, --e<tab> will offer --echo as a
completion option.

• Hitting tab when the most recent typed/completed token is a flag which takes a value, will ‘fall through’ to your
shell’s native filename completion.

– For example, prior to typing a task name, --config <tab>will complete local file paths to assist in filling
in a config file.

2.1. inv[oke] core usage 13

Invoke

14 Chapter 2. The invoke CLI tool

CHAPTER

THREE

CONCEPTS

Dig deeper into specific topics:

3.1 Configuration

3.1.1 Introduction

Invoke offers a multifaceted configuration mechanism allowing you to configure both core behavior and that of your
tasks, via a hierarchy of configuration files, environment variables, task namespaces and CLI flags.

The end result of configuration seeking, loading, parsing & merging is a Config object, which behaves like a (nested)
Python dictionary. Invoke references this object when it runs (determining the default behavior of methods like
Context.run) and exposes it to users’ tasks as Context.config or as shorthand attribute access on the Context
itself.

3.1.2 The configuration hierarchy

In brief, the order in which configuration values override one another is as follows:

1. Internal default values for behaviors which are controllable via configuration. See Default configuration values
for details.

2. Collection-driven configurations defined in tasks modules via Collection.configure. (See Collection-
based configuration below for details.)

• Sub-collections’ configurations get merged into the top level collection and the final result forms the basis
of the overall configuration setup.

3. System-level configuration file stored in /etc/, such as /etc/invoke.yaml. (See Configuration files for
details on this and the other config-file entries.)

4. User-level configuration file found in the running user’s home directory, e.g. ~/.invoke.yaml.

5. Project-level configuration file living next to your top level tasks.py. For example, if your run of Invoke
loads /home/user/myproject/tasks.py (see our docs on the load process), this might be /home/user/
myproject/invoke.yaml.

6. Environment variables found in the invoking shell environment.

• These aren’t as strongly hierarchical as the rest, nor is the shell environment namespace owned wholly by
Invoke, so we must rely on slightly verbose prefixing instead - see Environment variables for details.

7. Runtime configuration file whose path is given to -f , e.g. inv -f /random/path/to/config_file.yaml.
This path may also be set via the INVOKE_RUNTIME_CONFIG env var.

15

Invoke

8. Command-line flags for certain core settings, such as -e.

9. Modifications made by user code at runtime.

3.1.3 Default configuration values

Below is a list of all the configuration values and/or section Invoke itself uses to control behaviors such as Context.
run’s echo and pty flags, task deduplication, and so forth.

Note: The storage location for these values is inside the Config class, specifically as the return value of Config.
global_defaults; see its API docs for more details.

For convenience, we refer to nested setting names with a dotted syntax, so e.g. foo.bar refers to what would be (in a
Python config context) {'foo': {'bar': <value here>}}. Typically, these can be read or set on Config and
Context objects using attribute syntax, which looks nearly identical: c.foo.bar.

• The tasks config tree holds settings relating to task execution.

– tasks.dedupe controls Task deduplication and defaults to True. It can also be overridden at runtime via
--no-dedupe.

– tasks.auto_dash_names controls whether task and collection names have underscores turned to dashes
on the CLI. Default: True. See also Dashes vs underscores.

– tasks.collection_name controls the Python import name sought out by collection discovery, and de-
faults to "tasks".

– tasks.executor_class allows users to override the class instantiated and used for task execution.

Must be a fully-qualified dotted path of the form module(.submodule...).class, where all but .class
will be handed to importlib.import_module, and class is expected to be an attribute on that resulting
module object.

Defaults to None, meaning to use the running Program object’s executor_class attribute.

Warning: Take care if using this setting in tandem with custom program binaries, since custom
programs may specify their own default executor class (which your use of this setting will override!)
and assume certain behaviors stemming from that.

– tasks.ignore_unknown_help (default: False) lets users disable “help keys were supplied for nonexis-
tent arguments” errors. Normally, Invoke assumes such a situation implies a typo in the help argument to
@task, but sometimes users have good reasons for this.

– tasks.search_root allows overriding the default collection discovery root search location. It defaults to
None, which indicates to use the executing process’ current working directory.

• The run tree controls the behavior of Runner.run. Each member of this tree (such as run.echo or run.pty)
maps directly to a Runner.run keyword argument of the same name; see that method’s docstring for details on
what these settings do & what their default values are.

• The runners tree controls _which_ runner classes map to which execution contexts; if you’re using Invoke by
itself, this will only tend to have a single member, runners.local. Client libraries may extend it with additional
key/value pairs, such as runners.remote.

• The sudo tree controls the behavior of Context.sudo:

16 Chapter 3. Concepts

https://docs.python.org/2.7/library/importlib.html#importlib.import_module

Invoke

– sudo.password controls the autoresponse password submitted to sudo’s password prompt. Default: None.

Warning: While it’s possible to store this setting, like any other, in configuration files – doing so
is inherently insecure. We highly recommend filling this config value in at runtime from a secrets
management system of some kind.

– sudo.prompt holds the sudo password prompt text, which is both supplied to sudo -p, and searched for
when performing auto-response. Default: [sudo] password:.

• A top level config setting, debug, controls whether debug-level output is logged; it defaults to False.

debug can be toggled via the -d CLI flag, which enables debugging after CLI parsing runs. It can also be
toggled via the INVOKE_DEBUG environment variable which - unlike regular env vars - is honored from the start
of execution and is thus useful for troubleshooting parsing and/or config loading.

• A small config tree, timeouts, holds various kinds of timeout controls. At present, for Invoke, this only holds
a command subkey, which controls subprocess execution timeouts.

– Client code often adds more to this tree, and Invoke itself may add more in the future as well.

3.1.4 Configuration files

Loading

For each configuration file location mentioned in the previous section, we search for files ending in .yaml, .yml, .json
or .py (in that order!), load the first one we find, and ignore any others that might exist.

For example, if Invoke is run on a system containing both /etc/invoke.yml and /etc/invoke.json, only the
YAML file will be loaded. This helps keep things simple, both conceptually and in the implementation.

Format

Invoke’s configuration allows arbitrary nesting, and thus so do our config file formats. All three of the below examples
result in a configuration equivalent to {'debug': True, 'run': {'echo': True}}:

• YAML

debug: true
run:

echo: true

• JSON

{
"debug": true,
"run": {

"echo": true
}

}

• Python:

3.1. Configuration 17

Invoke

debug = True
run = {

"echo": True
}

For further details, see these languages’ own documentation.

3.1.5 Environment variables

Environment variables are a bit different from other configuration-setting methods, since they don’t provide a clean
way to nest configuration keys, and are also implicitly shared amongst the entire system’s installed application base.

In addition, due to implementation concerns, env vars must be pre-determined by the levels below them in the config
hierarchy (in other words - env vars may only be used to override existing config values). If you need Invoke to
understand a FOOBAR environment variable, you must first declare a foobar setting in a configuration file or in your
task collections.

Basic rules

To mitigate the shell namespace problem, we simply prefix all our env vars with INVOKE_.

Nesting is performed via underscore separation, so a setting that looks like e.g. {'run': {'echo': True}} at the
Python level becomes INVOKE_RUN_ECHO=1 in a typical shell. See Nesting vs underscored names below for more on
this.

Type casting

Since env vars can only be used to override existing settings, the previous value of a given setting is used as a guide in
casting the strings we get back from the shell:

• If the current value is a Unicode string, it is replaced with the value from the environment, with no casting
whatsoever;

• If the current value is None, it too is replaced with the string from the environment;

• Booleans are set as follows: 0 and the empty value/string (e.g. SETTING=, or unset SETTING, or etc) evaluate
to False, and any other value evaluates to True.

• Lists and tuples are currently unsupported and will raise an exception;

– In the future we may implement convenience transformations, such as splitting on commas to form a list;
however since users can always perform such operations themselves, it may not be a high priority.

• All other types - integers, longs, floats, etc - are simply used as constructors for the incoming value.

– For example, a foobar setting whose default value is the integer 1 will run all env var inputs through int,
and thus FOOBAR=5 will result in the Python value 5, not "5".

18 Chapter 3. Concepts

https://docs.python.org/2.7/library/functions.html#int

Invoke

Nesting vs underscored names

Since environment variable keys are single strings, we must use some form of string parsing to allow access to nested
configuration settings. As mentioned above, in basic use cases this just means using an underscore character: {'run':
{'echo': True}} becomes INVOKE_RUN_ECHO=1.

However, ambiguity is introduced when the settings names themselves contain underscores: is INVOKE_FOO_BAR=baz
equivalent to {'foo': {'bar': 'baz'}}, or to {'foo_bar': 'baz'}? Thankfully, because env vars can only
be used to modify settings declared at the Python level or in config files, we look at the current state of the config to
determine the answer.

There is still a corner case where both possible interpretations exist as valid config paths (e.g. {'foo': {'bar':
'default'}, 'foo_bar': 'otherdefault'}). In this situation, we honor the Zen of Python and refuse to guess;
an error is raised instead, counseling users to modify their configuration layout or avoid using env vars for the setting
in question.

3.1.6 Collection-based configuration

Collection objects may contain a config mapping, set via Collection.configure, and (as per the hierarchy) this
typically forms the lowest level of configuration in the system.

When collections are nested, configuration is merged ‘downwards’ by default: when conflicts arise, outer namespaces
closer to the root will win, versus inner ones closer to the task being invoked.

Note: ‘Inner’ tasks here are specifically those on the path from the root to the one housing the invoked task. ‘Sibling’
subcollections are ignored.

A quick example of what this means:

from invoke import Collection, task

This task & collection could just as easily come from
another module somewhere.
@task
def mytask(c):

print(c['conflicted'])
inner = Collection('inner', mytask)
inner.configure({'conflicted': 'default value'})

Our project's root namespace.
ns = Collection(inner)
ns.configure({'conflicted': 'override value'})

The result of calling inner.mytask:

$ inv inner.mytask
override value

3.1. Configuration 19

http://zen-of-python.info/in-the-face-of-ambiguity-refuse-the-temptation-to-guess.html#12

Invoke

3.1.7 Example of real-world config use

The previous sections had small examples within them; this section provides a more realistic-looking set of examples
showing how the config system works.

Setup

We’ll start out with semi-realistic tasks that hardcode their values, and build up to using the various configuration
mechanisms. A small module for building Sphinx docs might begin like this:

from invoke import task

@task
def clean(c):

c.run("rm -rf docs/_build")

@task
def build(c):

c.run("sphinx-build docs docs/_build")

Then maybe you refactor the build target:

target = "docs/_build"

@task
def clean(c):

c.run("rm -rf {}".format(target))

@task
def build(c):

c.run("sphinx-build docs {}".format(target))

We can also allow runtime parameterization:

default_target = "docs/_build"

@task
def clean(c, target=default_target):

c.run("rm -rf {}".format(target))

@task
def build(c, target=default_target):

c.run("sphinx-build docs {}".format(target))

This task module works for a single set of users, but what if we want to allow reuse? Somebody may want to use this
module with a different default target. Using the configuration data (made available via the context arg) to configure
these settings is usually the better solution1.

1 Copying and modifying the file breaks code reuse; overriding the module-level default_path variable won’t play well with concurrency;
wrapping the tasks with different default arguments works but is fragile and adds boilerplate.

20 Chapter 3. Concepts

http://sphinx-doc.org

Invoke

Configuring via task collection

The configuration setting and gettingAPIs enable moving otherwise ‘hardcoded’ default values into a config struc-
ture which downstream users are free to redefine. Let’s apply this to our example. First we add an explicit namespace
object:

from invoke import Collection, task

default_target = "docs/_build"

@task
def clean(c, target=default_target):

c.run("rm -rf {}".format(target))

@task
def build(c, target=default_target):

c.run("sphinx-build docs {}".format(target))

ns = Collection(clean, build)

Then we can move the default build target value into the collection’s default configuration, and refer to it via the context.
At this point we also change our kwarg default value to be None so we can determine whether or not a runtime value
was given. The result:

@task
def clean(c, target=None):

if target is None:
target = c.sphinx.target

c.run("rm -rf {}".format(target))

@task
def build(c, target=None):

if target is None:
target = c.sphinx.target

c.run("sphinx-build docs {}".format(target))

ns = Collection(clean, build)
ns.configure({'sphinx': {'target': "docs/_build"}})

The result isn’t significantly more complex than what we began with, and as we’ll see next, it’s now trivial for users to
override your defaults in various ways.

Configuration overriding

The lowest-level override is, of course, just modifying the local Collection tree into which a distributed module has
been imported. E.g. if the above module is distributed as myproject.docs, someone can define a tasks.py that
does this:

from invoke import Collection, task
from myproject import docs

@task
def mylocaltask(c):

(continues on next page)

3.1. Configuration 21

Invoke

(continued from previous page)

Some local stuff goes here
pass

Add 'docs' to our local root namespace, plus our own task
ns = Collection(mylocaltask, docs)

And then they can add this to the bottom:

Our docs live in 'built_docs', not 'docs/_build'
ns.configure({'sphinx': {'target': "built_docs"}})

Now we have a docs sub-namespace whose build target defaults to built_docs instead of docs/_build. Runtime
users can still override this via flags (e.g. inv docs.build --target='some/other/dir') just as before.

If you prefer configuration files over in-Python tweaking of your namespace tree, that works just as well; instead of
adding the line above to the previous snippet, instead drop this into a file next to tasks.py named invoke.yaml:

sphinx:
target: built_docs

For this example, that sort of local-to-project conf file makes the most sense, but don’t forget that the config hierarchy
offers additional configuration methods which may be suitable depending on your needs.

3.2 Invoking tasks

This page explains how to invoke your tasks on the CLI, both in terms of parser mechanics (how your tasks’ arguments
are exposed as command-line options) and execution strategies (which tasks actually get run, and in what order).

(For details on Invoke’s core flags and options, see inv[oke] core usage.)

• Basic command line layout

• Task command-line arguments

– Type casting

– Per-task help / printing available flags

– Globbed short flags

– Optional flag values

∗ Resolving ambiguity

– Iterable flag values

– Incrementable flag values

– Dashes vs underscores in flag names

– Automatic Boolean inverse flags

• How tasks run

– Base case

– Pre- and post-tasks

22 Chapter 3. Concepts

Invoke

∗ Recursive/chained pre/post-tasks

∗ Parameterizing pre/post-tasks

– Task deduplication

∗ Disabling deduplication

3.2.1 Basic command line layout

Invoke may be executed as invoke (or inv for short) and its command line layout looks like this:

$ inv [--core-opts] task1 [--task1-opts] ... taskN [--taskN-opts]

Put plainly, Invoke’s CLI parser splits your command line up into multiple “parser contexts” which allows it to
reason about the args and options it will accept:

• Before any task names are given, the parser is in the “core” parse context, and looks for core options and flags
such as --echo, --list or --help.

• Any non-argument-like token (such as mytask) causes a switch into a per-task context (or an error, if no task
matching that name seems to exist in the loaded collection).

• At this point, argument-like tokens are expected to correspond to the arguments for the previously named task
(see Task command-line arguments).

• Then this cycle repeats infinitely, allowing chained execution of arbitrary numbers of tasks. (In practice, most
users only execute one or two at a time.)

For the core arguments and flags, see inv[oke] core usage; for details on how your tasks affect the CLI, read onwards.

Note: There is a minor convenience-minded exception to how parse contexts behave: core options may also be given
inside per-task contexts, if and only if there is no conflict with similarly-named/prefixed arguments of the being-parsed
task.

For example, invoke mytask --echo will behave identically to invoke --echo mytask, unless mytask has its
own echo flag (in which case that flag is handed to the task context, as normal).

Similarly, invoke mytask -e will turn on command echoing too, unless mytask has its own argument whose short-
flag ends up set to -e (e.g. def mytask(env)).

3.2.2 Task command-line arguments

The simplest task invocation, for a task requiring no parameterization:

$ inv mytask

Tasks may take parameters in the form of flag arguments:

$ inv build --format=html
$ inv build --format html
$ inv build -f pdf
$ inv build -f=pdf

3.2. Invoking tasks 23

Invoke

Note that both long and short style flags are supported, and that equals signs are optional in both cases.

Boolean options are simple flags with no arguments:

$ inv build --progress-bar

Naturally, more than one flag may be given at a time:

$ inv build --progress-bar -f pdf

Type casting

Natively, a command-line string is just that – a string – requiring some leaps of logic to arrive at any non-string values
on the Python end. Invoke has a number of these tricks already at hand, and more will be implemented in the future.
Currently:

• Arguments with default values use those default values as a type hint, so def mytask(c, count=1) will see
inv mytask --count=5 and result in the Python integer value 5 instead of the string "5".

– Default values of None are effectively the same as having no default value at all - no type casting occurs
and you’re left with a string.

• The primary exception to the previous rule is booleans: default values of True or False cause those arguments
to show up as actual non-value-taking flags (--argname to set the value to True if the default was False, or
--no-argment in the opposite case). See Automatic Boolean inverse flags for more examples.

• List values (which you wouldn’t want to set as an argument’s default value anyways – it’s a common Python
misstep) are served by a special @task flag - see Iterable flag values below.

• There’s currently no way to set other compound values (such as dicts) on the command-line; solving this more
complex problem is left as an exercise to the reader (though we may add helpers for such things in the future).

Per-task help / printing available flags

To get help for a specific task, you can give the task name as an argument to the core --help/-h option, or give
--help/-h after the task (which will trigger custom-to-help behavior where the task name itself is given to --help
as its argument value).

When help is requested, you’ll see the task’s docstring (if any) and per-argument/flag help output:

$ inv --help build # or invoke build --help

Docstring:
none

Options for 'build':
-f STRING, --format=STRING Which build format type to use
-p, --progress-bar Display progress bar

24 Chapter 3. Concepts

Invoke

Globbed short flags

Boolean short flags may be combined into one flag expression, so that e.g.:

$ inv build -qv

is equivalent to (and expanded into, during parsing):

$ inv build -q -v

If the first flag in a globbed short flag token is not a boolean but takes a value, the rest of the glob is taken to be the
value instead. E.g.:

$ inv build -fpdf

is expanded into:

$ inv build -f pdf

and not:

$ inv build -f -p -d -f

Optional flag values

You saw a hint of this with --help specifically, but non-core options may also take optional values, if declared as
optional. For example, say your task has a --log flag that activates logging:

$ inv compile --log

but you also want it to be configurable regarding where to log:

$ inv compile --log=foo.log

You could implement this with an additional argument (e.g. --log and --log-location) but sometimes the concise
API is the more useful one.

To enable this, specify which arguments are of this ‘hybrid’ optional-value type inside @task:

@task(optional=['log'])
def compile(c, log=None):

if log:
log_file = '/var/log/my.log'
Value was given, vs just-True
if isinstance(log, str):

log_file = log
Replace w/ your actual log setup...
set_log_destination(log_file)

Do things that might log here...

When optional flag values are used, the values seen post-parse follow these rules:

• If the flag is not given at all (invoke compile) the default value is filled in as normal.

• If it is given with a value (invoke compile --log=foo.log) then the value is stored normally.

• If the flag is given with no value (invoke compile --log), it is treated as if it were a bool and set to True.

3.2. Invoking tasks 25

Invoke

Resolving ambiguity

There are a number of situations where ambiguity could arise for a flag that takes an optional value:

• When a task takes positional arguments and they haven’t all been filled in by the time the parser arrives at the
optional-value flag;

• When the token following one of these flags looks like it is itself a flag; or

• When that token has the same name as another task.

In most of these situations, Invoke’s parser will refuse the temptation to guess and raise an error.

However, in the case where the ambiguous token is flag-like, the current parse context is checked to resolve the ambi-
guity:

• If the token is an otherwise legitimate argument, it is assumed that the user meant to give that argument imme-
diately after the current one, and no optional value is set.

– E.g. in invoke compile --log --verbose (assuming --verbose is another legit argument for
compile) the parser decides the user meant to give --log without a value, and followed it up with the
--verbose flag.

• Otherwise, the token is interpreted literally and stored as the value for the current flag.

– E.g. if --verbose is not a legitimate argument for compile, then invoke compile --log --verbose
causes the parser to assign "--verbose" as the value given to --log. (This will probably cause other
problems in our contrived use case, but it illustrates our point.)

Iterable flag values

A not-uncommon use case for CLI programs is the desire to build a list of values for a given option, instead of a single
value. While this can be done via sub-string parsing – e.g. having users invoke a command with --mylist item1,
item2,item3 and splitting on the comma – it’s often preferable to specify the option multiple times and store the
values in a list (instead of overwriting or erroring.)

In Invoke, this is enabled by hinting to the parser that one or more task arguments are iterable in nature (similar to
how one specifies optional or positional):

@task(iterable=['my_list'])
def mytask(c, my_list):

print(my_list)

When not given at all, the default value for my_list will be an empty list; otherwise, the result is a list, appending
each value seen, in order, without any other manipulation (so no deduplication, etc):

$ inv mytask
[]
$ inv mytask --my-list foo
['foo']
$ inv mytask --my-list foo --my-list bar
['foo', 'bar']
$ inv mytask --my-list foo --my-list bar --my-list foo
['foo', 'bar', 'foo']

26 Chapter 3. Concepts

http://zen-of-python.info/in-the-face-of-ambiguity-refuse-the-temptation-to-guess.html#12

Invoke

Incrementable flag values

This is arguably a sub-case of iterable flag values (seen above) - it has the same core interface of “give a CLI argument
multiple times, and have that do something other than error or overwrite a single value.” However, ‘incrementables’ (as
you may have guessed) increment an integer instead of building a list of strings. This is commonly found in verbosity
flags and similar functionality.

An example of exactly that:

@task(incrementable=['verbose'])
def mytask(c, verbose=0):

print(verbose)

And its use:

$ inv mytask
0
$ inv mytask --verbose
1
$ inv mytask -v
1
$inv mytask -vvv
3

Happily, because in Python 0 is ‘falsey’ and 1 (or any other number) is ‘truthy’, this functions a lot like a boolean flag
as well, at least if one defaults it to 0.

Note: You may supply any integer default value for such arguments (it simply serves as the starting value), but take
care that consumers of the argument are written understanding that it is always going to appear ‘truthy’ unless it’s 0!

Dashes vs underscores in flag names

In Python, it’s common to use underscored_names for keyword arguments, e.g.:

@task
def mytask(c, my_option=False):

pass

However, the typical convention for command-line flags is dashes, which aren’t valid in Python identifiers:

$ inv mytask --my-option

Invoke works around this by automatically generating dashed versions of underscored names, when it turns your task
function signatures into command-line parser flags.

Therefore, the two examples above actually work fine together – my_option ends up mapping to --my-option.

In addition, leading (_myopt) and trailing (myopt_) underscores are ignored, since invoke ---myopt and invoke
--myopt- don’t make much sense.

3.2. Invoking tasks 27

Invoke

Automatic Boolean inverse flags

Boolean flags tend to work best when setting something that is normally False, to True:

$ inv mytask --yes-please-do-x

However, in some cases, you want the opposite - a default of True, which can be easily disabled. For example, colored
output:

@task
def run_tests(c, color=True):

...

Here, what we really want on the command line is a --no-color flag that sets color=False. Invoke handles this for
you: when setting up CLI flags, booleans which default to True generate a --no-<name> flag instead.

3.2.3 How tasks run

Base case

In the simplest case, a task with no pre- or post-tasks runs one time. Example:

@task
def hello(c):

print("Hello, world!")

Execution:

$ inv hello
Hello, world!

Pre- and post-tasks

Tasks that should always have another task executed before or after them, may use the @task deocator’s pre and/or
post kwargs, like so:

@task
def clean(c):

print("Cleaning")

@task
def publish(c):

print("Publishing")

@task(pre=[clean], post=[publish])
def build(c):

print("Building")

Execution:

28 Chapter 3. Concepts

Invoke

$ inv build
Cleaning
Building
Publishing

These keyword arguments always take iterables. As a convenience, pre-tasks (and pre-tasks only) may be given as
positional arguments, in a manner similar to build systems like make. E.g. we could present part of the above example
as:

@task
def clean(c):

print("Cleaning")

@task(clean)
def build(c):

print("Building")

As before, invoke build would cause clean to run, then build.

Recursive/chained pre/post-tasks

Pre-tasks of pre-tasks will also be invoked (as will post-tasks of pre-tasks, pre-tasks of post-tasks, etc) in a depth-first
manner, recursively. Here’s a more complex (if slightly contrived) tasks file:

@task
def clean_html(c):

print("Cleaning HTML")

@task
def clean_tgz(c):

print("Cleaning .tar.gz files")

@task(clean_html, clean_tgz)
def clean(c):

print("Cleaned everything")

@task
def makedirs(c):

print("Making directories")

@task(clean, makedirs)
def build(c):

print("Building")

@task(build)
def deploy(c):

print("Deploying")

With a depth-first behavior, the below is hopefully intuitive to most users:

$ inv deploy
Cleaning HTML

(continues on next page)

3.2. Invoking tasks 29

Invoke

(continued from previous page)

Cleaning .tar.gz files
Cleaned everything
Making directories
Building
Deploying

Parameterizing pre/post-tasks

By default, pre- and post-tasks are executed with no arguments, even if the task triggering their execution was given
some. When this is not suitable, you can wrap the task objects with call objects which allow you to specify a call
signature:

@task
def clean(c, which=None):

which = which or 'pyc'
print("Cleaning {}".format(which))

@task(pre=[call(clean, which='all')]) # or call(clean, 'all')
def build(c):

print("Building")

Example output:

$ inv build
Cleaning all
Building

Task deduplication

By default, any task that would run more than once during a session (due e.g. to inclusion in pre/post tasks), will only
be run once. Example task file:

@task
def clean(c):

print("Cleaning")

@task(clean)
def build(c):

print("Building")

@task(build)
def package(c):

print("Packaging")

With deduplication turned off (see below), the above would execute clean -> build -> build again -> package.
With deduplication, the double build does not occur:

$ inv build package
Cleaning
Building
Packaging

30 Chapter 3. Concepts

Invoke

Note: Parameterized pre-tasks (using call) are deduped based on their argument lists. For example, if clean was
parameterized and hooked up as a pre-task in two different ways - e.g. call(clean, 'html') and call(clean,
'all') - they would not get deduped should both end up running in the same session.

However, two separate references to call(clean, 'html') would become deduplicated.

Disabling deduplication

If you prefer your tasks to run every time no matter what, you can give the --no-dedupe core CLI option at runtime,
or set the tasks.dedupe config setting to False. While it doesn’t make a ton of real-world sense, let’s imagine we
wanted to apply --no-dedupe to the above example; we’d see the following output:

$ inv --no-dedupe build package
Cleaning
Building
Building
Packaging

The build step is now running twice.

3.3 Using Invoke as a library

While most of our documentation involves the user/CLI facing use cases of task management and command execution,
Invoke was designed for its constituent parts to be usable independently by advanced users - either out of the box or
with a minimum of extra work. CLI parsing, subprocess command execution, task organization, etc, are all written as
broadly separated concerns.

This document outlines use cases already known to work (because downstream tools like Fabric are already utilizing
them).

3.3.1 Reusing Invoke’s CLI module as a distinct binary

A major use case is distribution of your own program using Invoke under the hood, bound to a different binary name,
and usually setting a specific task namespace as the default. (This maps somewhat closely to things like argparse
from the standard library.) In some cases, removing, replacing and/or adding core CLI flags is also desired.

Getting set up

Say you want to distribute a test runner called tester offering two subcommands, unit and integration, such
that users could pip install tester and have access to commands like tester unit, tester integration, or
tester integration --fail-fast.

First, as with any distinct Python package providing CLI ‘binaries’, you’d inform your setup.py of your entrypoint:

setup(
name='tester',
version='0.1.0',
packages=['tester'],
install_requires=['invoke'],

(continues on next page)

3.3. Using Invoke as a library 31

https://fabfile.org

Invoke

(continued from previous page)

entry_points={
'console_scripts': ['tester = tester.main:program.run']

}
)

Note: This is just an example snippet and is not a fully valid setup.py; if you don’t know how Python packaging
works, a good starting place is the Python Packaging User’s Guide.

Nothing here is specific to Invoke - it’s a standard way of telling Python to install a tester script that executes the run
method of a program object defined inside the module tester.main.

Creating a Program

In our tester/main.py, we start out importing Invoke’s public CLI functionality:

from invoke import Program

Then we define the program object we referenced in setup.py, which is a simple Program to do the heavy lifting,
giving it our version number for starters:

program = Program(version='0.1.0')

At this point, installing tester would give you the same functionality as Invoke’s built-in CLI tool, except named
tester and exposing its own version number:

$ tester --version
Tester 0.1.0
$ tester --help
Usage: tester [--core-opts] task1 [--task1-opts] ... taskN [--taskN-opts]

Core options:
... core Invoke options here ...

$ tester --list
Can't find any collection named 'tasks'!

This doesn’t do us much good yet - there aren’t any subcommands (and our users don’t care about arbitrary ‘tasks’, so
Invoke’s own default --help and --list output isn’t a good fit).

Specifying subcommands

For tester to expose unit and integration subcommands, we need to define them, in a regular Invoke tasks module
or namespace. For our example, we’ll just create tester/tasks.py (but as you’ll see in a moment, this too is arbitrary
and can be whatever you like):

from invoke import task

@task
def unit(c):

print("Running unit tests!")
(continues on next page)

32 Chapter 3. Concepts

https://python-packaging-user-guide.readthedocs.io

Invoke

(continued from previous page)

@task
def integration(c):

print("Running integration tests!")

As described in Constructing namespaces, you can arrange this module however you want - the above snippet uses an
implicit namespace for brevity’s sake.

Note: It’s important to realize that there’s nothing special about these “subcommands” - you could run them just as
easily with vanilla Invoke, e.g. via invoke --collection=tester.tasks --list.

Now the useful part: telling our custom Program that this namespace of tasks should be used as the subcommands for
tester, via the namespace kwarg:

from invoke import Collection, Program
from tester import tasks

program = Program(namespace=Collection.from_module(tasks), version='0.1.0')

The result?

$ tester --version
Tester 0.1.0
$ tester --help
Usage: tester [--core-opts] <subcommand> [--subcommand-opts] ...

Core options:
... core options here, minus task-related ones ...

Subcommands:
unit
integration

$ tester --list
No idea what '--list' is!
$ tester unit
Running unit tests!

Notice how the ‘usage’ line changed (to specify ‘subcommands’ instead of ‘tasks’); the list of specific subcommands
is now printed as part of --help; and --list has been removed from the options.

You can enable tab-completion for your distinct binary and subcommands.

3.3. Using Invoke as a library 33

Invoke

Modifying core parser arguments

A common need for this use case is tweaking the core parser arguments. Program makes it easy: default core
Arguments are returned by Program.core_args. Extend this method’s return value with super and you’re done:

Presumably, this is your setup.py-designated CLI module...

from invoke import Program, Argument

class MyProgram(Program):
def core_args(self):

core_args = super().core_args()
extra_args = [

Argument(names=('foo', 'f'), help="Foo the bars"),
...

]
return core_args + extra_args

program = MyProgram()

Warning: We don’t recommend omitting any of the existing core arguments; a lot of basic functionality relies on
their existence, even when left to default values.

3.3.2 Customizing the configuration system’s defaults

Besides the CLI-oriented content of the previous section, another area of functionality that frequently needs updating
when redistributing an Invoke codebase (CLI or no CLI) is configuration. There are typically two concerns here:

• Configuration filenames and the env var prefix - crucial if you ever expect your users to use the configuration
system;

• Default configuration values - less critical (most defaults aren’t labeled with anything Invoke-specific) but still
sometimes desirable.

Note: Both of these involve subclassing Config (and, if using the CLI machinery, informing your Program to use
that subclass instead of the default one.)

Changing filenames and/or env var prefix

By default, Invoke’s config system looks for files like /etc/invoke.yaml, ~/.invoke.json, etc. If you’re distribut-
ing client code named something else, like the Tester example earlier, you might instead want the config system to
load /etc/tester.json or $CWD/tester.py.

Similarly, the environment variable config level looks for env vars like INVOKE_RUN_ECHO; you might prefer
TESTER_RUN_ECHO.

There are a few Config attributes controlling these values:

• prefix: A generic, catchall prefix used directly as the file prefix, and used via all-caps as the env var prefix;

• file_prefix: For overriding just the filename prefix - otherwise, it defaults to the value of prefix;

34 Chapter 3. Concepts

Invoke

• env_prefix: For overriding just the env var prefix - as you might have guessed, it too defaults to the value of
prefix.

Continuing our ‘Tester’ example, you’d do something like this:

from invoke import Config

class TesterConfig(Config):
prefix = 'tester'

Or, to seek tester.yaml as before, but TEST_RUN_ECHO instead of TESTER_RUN_ECHO:

class TesterConfig(Config):
prefix = 'tester'
env_prefix = 'TEST'

Modifying default config values

Default config values are simple - they’re just the return value of the staticmethod Config.global_defaults, so
override that and return whatever you like - ideally something based on the superclass’ values, as many defaults are
assumed to exist by the rest of the system. (The helper function invoke.config.merge_dicts can be useful here.)

For example, say you want Tester to always echo shell commands by default when your codebase calls Context.run:

from invoke import Program
from invoke.config import Config, merge_dicts

class TesterConfig(Config):
@staticmethod
def global_defaults():

their_defaults = Config.global_defaults()
my_defaults = {

'run': {
'echo': True,

},
}
return merge_dicts(their_defaults, my_defaults)

program = Program(config_class=TesterConfig, version='0.1.0')

For reference, Invoke’s own base defaults (the. . . default defaults, you could say) are documented at Default configura-
tion values.

3.4 Loading collections

The core of Invoke’s execution model involves one or more Collection objects. While these may be created program-
matically, in typical use Invoke will create them for you from Python modules it finds or is told to use.

3.4. Loading collections 35

Invoke

3.4.1 Task module discovery

With no other configuration, simply calling invoke will look for a single Python module or package named tasks,
and will treat it as the root namespace. tasks (or any other name given via loading configuration options) is searched
for in the following ways:

• First, if a valid tasks module by that name already exists on Python’s sys.path, no more searching is done – that
module is selected.

• Failing that, search towards the root of the local filesystem, starting with the user’s current working directory
(os.getcwd) and try importing again with each directory temporarily added to sys.path.

– Due to how Python’s import machinery works, this approach will always favor a package directory (tasks/
containing an __init__.py) over a module file (tasks.py) in the same location.

– If a candidate is found and successfully imported, its parent directory will stay on sys.path during the rest
of the Python session – this allows task code to make convenient assumptions concerning sibling modules’
importability.

Candidate modules/packages are introspected to make sure they can actually be used as valid task collections. Any that
fail are discarded, the sys.path munging done to import them is reverted, and the search continues.

3.4.2 Configuring the loading process

You can configure the above behavior, requesting that Invoke alter the collection name searched for and/or the path
where filesystem-level loading starts looking.

For example, you may already have a project-level tasks.py that you can’t easily rename; or you may want to host a
number of tasks collections stored outside the project root and make it easy to switch between them; or any number of
reasons.

Both the sought collection name and the search root can be specified via configuration file options or as runtime CLI
flags:

• Change the collection name: Set the tasks.collection_name configuration option, or use --collection.
It should be a Python module name and not a file name (so mytasks, not mytasks.py or mytasks/.)

• Change the root search path: Configure tasks.search_root or use --search-root. This value may be
any valid directory path.

3.5 Constructing namespaces

The base case of loading a single module of tasks works fine initially, but advanced users typically need more organi-
zation, such as separating tasks into a tree of nested namespaces.

The Collection class provides an API for organizing tasks (and their configuration) into a tree-like structure. When
referenced by strings (e.g. on the CLI or in pre/post hooks) tasks in nested namespaces use a dot-separated syntax, e.g.
docs.build.

In this section, we show how building namespaces with this API is flexible but also allows following Python package
layouts with minimal boilerplate.

36 Chapter 3. Concepts

https://docs.python.org/release/2.7/library/sys.html#sys.path
https://docs.python.org/release/2.7/library/os.html#os.getcwd

Invoke

3.5.1 Starting out

One unnamed Collection is always the namespace root; in the implicit base case, Invoke creates one for you from
the tasks in your tasks module. Create your own, named namespace or ns, to set up an explicit namespace (i.e. to skip
the default “pull in all Task objects” behavior):

from invoke import Collection

ns = Collection()
or: namespace = Collection()

Add tasks with Collection.add_task . add_task can take an Task object, such as those generated by the task
decorator:

from invoke import Collection, task

@task
def release(c):

c.run("python setup.py sdist register upload")

ns = Collection()
ns.add_task(release)

Our available tasks list now looks like this:

$ invoke --list
Available tasks:

release

3.5.2 Naming your tasks

By default, a task’s function name is used as its namespace identifier, but you may override this by giving a name
argument to either @task (i.e. at definition time) or Collection.add_task (i.e. at binding/attachment time).

For example, say you have a variable name collision in your tasks module – perhaps you want to expose a dir task,
which shadows a Python builtin. Naming your function itself dir is a bad idea, but you can name the function something
like dir_ and then tell @task the “real” name:

@task(name='dir')
def dir_(c):

...

On the other side, you might have obtained a task object that doesn’t fit with the names you want in your namespace,
and can rename it at attachment time. Maybe we want to rename our release task to be called deploy instead:

ns = Collection()
ns.add_task(release, name='deploy')

The result:

$ invoke --list
Available tasks:

(continues on next page)

3.5. Constructing namespaces 37

Invoke

(continued from previous page)

deploy

Note: The name kwarg is the 2nd argument to add_task , so those in a hurry can phrase it as:

ns.add_task(release, 'deploy')

Aliases

Tasks may have additional names or aliases, given as the aliases keyword argument; these are appended to, instead
of replacing, any implicit or explicit name value:

ns.add_task(release, aliases=('deploy', 'pypi'))

Result, with three names for the same task:

$ invoke --list
Available tasks:

release
deploy
pypi

Note: The convenience decorator @task is another method of setting aliases (e.g. @task(aliases=('foo',
'bar')), and is useful for ensuring a given task always has some aliases set no matter how it’s added to a names-
pace.

Dashes vs underscores

In the common case of functions-as-tasks, you’ll often find yourself writing task names that contain underscores:

@task
def my_awesome_task(c):

print("Awesome!")

Similar to how task arguments are processed to turn their underscores into dashes (since that’s a common command-line
convention) all underscores in task or collection names are interpreted to be dashes instead, by default:

$ inv --list
Available tasks:

my-awesome-task

$ inv my-awesome-task
Awesome!

If you’d prefer the underscores to remain instead, you can update your configuration to set tasks.auto_dash_names
to False in one of the non-runtime config files (system, user, or project.) For example, in ~/.invoke.yml:

38 Chapter 3. Concepts

Invoke

tasks:
auto_dash_names: false

Note: In the interests of avoiding confusion, this setting is “exclusive” in nature - underscored version of task names
are not valid on the CLI unless auto_dash_names is disabled. (However, at the pure function level within Python,
they must continue to be referenced with underscores, as dashed names are not valid Python syntax!)

3.5.3 Nesting collections

The point of namespacing is to have sub-namespaces; to do this in Invoke, create additional Collection instances
and add them to their parent collection via Collection.add_collection. For example, let’s say we have a couple
of documentation tasks:

@task
def build_docs(c):

c.run("sphinx-build docs docs/_build")

@task
def clean_docs(c):

c.run("rm -rf docs/_build")

We can bundle them up into a new, named collection like so:

docs = Collection('docs')
docs.add_task(build_docs, 'build')
docs.add_task(clean_docs, 'clean')

And then add this new collection under the root namespace with add_collection:

ns.add_collection(docs)

The result (assuming for now that ns currently just contains the original release task):

$ invoke --list
Available tasks:

release
docs.build
docs.clean

As with tasks, collections may be explicitly bound to their parents with a different name than they were originally given
(if any) via a name kwarg (also, as with add_task, the 2nd regular arg):

ns.add_collection(docs, 'sphinx')

Result:

$ invoke --list
Available tasks:

release
(continues on next page)

3.5. Constructing namespaces 39

Invoke

(continued from previous page)

sphinx.build
sphinx.clean

3.5.4 Importing modules as collections

A simple tactic which Invoke itself uses in the trivial, single-module case is to use Collection.from_module – a
classmethod serving as an alternate Collection constructor which takes a Python module object as its first argument.

Modules given to this method are scanned for Task instances, which are added to a new Collection. By default, this
collection’s name is taken from the module name (the __name__ attribute), though it can also be supplied explicitly.

Note: As with the default task module, you can override this default loading behavior by declaring a ns or namespace
Collection object at top level in the loaded module.

For example, let’s reorganize our earlier single-file example into a Python package with several submodules. First,
tasks/release.py:

from invoke import task

@task
def release(c):

c.run("python setup.py sdist register upload")

And tasks/docs.py:

from invoke import task

@task
def build(c):

c.run("sphinx-build docs docs/_build")

@task
def clean(c):

c.run("rm -rf docs/_build")

Tying them together is tasks/__init__.py:

from invoke import Collection

import release, docs

ns = Collection()
ns.add_collection(Collection.from_module(release))
ns.add_collection(Collection.from_module(docs))

This form of the API is a little unwieldy in practice. Thankfully there’s a shortcut: add_collection will notice when
handed a module object as its first argument and call Collection.from_module for you internally:

ns = Collection()
ns.add_collection(release)
ns.add_collection(docs)

40 Chapter 3. Concepts

Invoke

Either way, the result:

$ invoke --list
Available tasks:

release.release
docs.build
docs.clean

3.5.5 Default tasks

Tasks may be declared as the default task to invoke for the collection they belong to, e.g. by giving default=True to
@task (or to Collection.add_task .) This is useful when you have a bunch of related tasks in a namespace but one
of them is the most commonly used, and maps well to the namespace as a whole.

For example, in the documentation submodule we’ve been experimenting with so far, the build task makes sense as a
default, so we can say things like invoke docs as a shortcut to invoke docs.build. This is easy to do:

@task(default=True)
def build(c):

...

When imported into the root namespace (as shown above) this alters the output of --list, highlighting the fact that
docs.build can be invoked as docs if desired:

$ invoke --list
Available tasks:

release.release
docs.build (docs)
docs.clean

Default subcollections

As of version 1.5, this functionality is also extended to subcollections: a subcollection can be specified as the default
when being added to its parent collection, and that subcollection’s own default task (or sub-subcollection!) will be
invoked as the default for the parent.

An example probably makes that clearer. Here’s a tiny inline task tree with two subcollections, each with their own
default task:

from invoke import Collection, task

@task(default=True)
def build_all(c):

print("build ALL THE THINGS!")

@task
def build_wheel(c):

print("Just the wheel")

build = Collection(all=build_all, wheel=build_wheel)
(continues on next page)

3.5. Constructing namespaces 41

Invoke

(continued from previous page)

@task(default=True)
def build_docs(c):

print("Code without docs is no code at all")

docs = Collection(build_docs)

Then we tie those into one top level collection, setting the build subcollection as the overall default:

ns = Collection()
ns.add_collection(build, default=True)
ns.add_collection(docs)

The result is that build.all becomes the absolute default task:

$ invoke
build ALL THE THINGS!

3.5.6 Mix and match

You’re not limited to the specific tactics shown above – now that you know the basic tools of add_task and
add_collection, use whatever approach best fits your needs.

For example, let’s say you wanted to keep things organized into submodules, but wanted to “promote” release.
release back to the top level for convenience’s sake. Just because it’s stored in a module doesn’t mean we must use
add_collection – we could instead import the task itself and use add_task directly:

from invoke import Collection

import docs
from release import release

ns = Collection()
ns.add_collection(docs)
ns.add_task(release)

Result:

$ invoke --list
Available tasks:

release
docs.build
docs.clean

42 Chapter 3. Concepts

Invoke

3.5.7 More shortcuts

Finally, you can even skip add_collection and add_task if your needs are simple enough – Collection’s con-
structor will take unknown arguments and build the namespace from their values as appropriate:

from invoke import Collection

import docs, release

ns = Collection(release.release, docs)

Notice how we gave both a task object (release.release) and a module containing tasks (docs). The result is
identical to the above:

$ invoke --list
Available tasks:

release
docs.build
docs.clean

If given as keyword arguments, the keywords act like the name arguments do in the add_* methods. Naturally, both
can be mixed together as well:

ns = Collection(docs, deploy=release.release)

Result:

$ invoke --list
Available tasks:

deploy
docs.build
docs.clean

Note: You can still name these Collection objects with a leading string argument if desired, which can be handy
when building sub-collections.

3.5. Constructing namespaces 43

Invoke

3.6 Testing Invoke-using codebases

Strategies for testing codebases that use Invoke; some applicable to code focused on CLI tasks, and others applicable
to more generic/refactored setups.

3.6.1 Subclass & modify Invoke ‘internals’

A quick foreword: most users will find the subsequent approaches suitable, but advanced users should note that Invoke
has been designed so it is itself easily testable. This means that in many cases, even Invoke’s “internals” are exposed as
low/no-shared-responsibility, publicly documented classes which can be subclassed and modified to inject test-friendly
values or mocks. Be sure to look over the API documentation!

3.6.2 Use MockContext

An instance of subclassing Invoke’s public API for test purposes is our own MockContext. Codebases which revolve
heavily around Context objects and their methods (most task-oriented code) will find it easy to test by injecting
MockContext objects which have been instantiated to yield partial Result objects.

For example, take this task:

from invoke import task

@task
def get_platform(c):

uname = c.run("uname -s").stdout.strip()
if uname == 'Darwin':

return "You paid the Apple tax!"
elif uname == 'Linux':

return "Year of Linux on the desktop!"

An example of testing it with MockContext could be the following:

from invoke import MockContext, Result
from mytasks import get_platform

def test_get_platform_on_mac():
c = MockContext(run=Result("Darwin\n"))
assert "Apple" in get_platform(c)

def test_get_platform_on_linux():
c = MockContext(run=Result("Linux\n"))
assert "desktop" in get_platform(c)

44 Chapter 3. Concepts

Invoke

Putting the Mock in MockContext

Starting in Invoke 1.5, MockContext will attempt to import the mock library at instantiation time and wrap its methods
within Mock objects. This lets you not only present realistic return values to your code, but make test assertions about
what commands your code is running.

Here’s another “platform sensitive” task:

from invoke import task

@task
def replace(c, path, search, replacement):

Assume systems have sed, and that some (eg macOS w/ Homebrew) may
have gsed, implying regular sed is BSD style.
has_gsed = c.run("which gsed", warn=True, hide=True)
Set command to run accordingly
binary = "gsed" if has_gsed else "sed"
c.run(f"{binary} -e 's/{search}/{replacement}/g' {path}")

The test code (again, which presumes that eg MockContext.run is now a Mock wrapper) relies primarily on ‘last call’
assertions (Mock.assert_called_with) but you can of course use any Mock methods you need. It also shows how
you can set the mock context to respond to multiple possible commands, using a dict value:

from invoke import MockContext, Result
from mytasks import replace

def test_regular_sed():
expected_sed = "sed -e s/foo/bar/g file.txt"
c = MockContext(run={

"which gsed": Result(exited=1),
expected_sed: Result(),

})
replace(c, 'file.txt', 'foo', 'bar')
c.run.assert_called_with(expected_sed)

def test_homebrew_gsed():
expected_sed = "gsed -e s/foo/bar/g file.txt"
c = MockContext(run={

"which gsed": Result(exited=0),
expected_sed: Result(),

})
replace(c, 'file.txt', 'foo', 'bar')
c.run.assert_called_with(expected_sed)

3.6. Testing Invoke-using codebases 45

Invoke

Boolean mock results

You may have noticed the above example uses a handful of ‘empty’ Result objects; these stand in for “succeeded, but
otherwise had no useful attributes” command executions (as Result defaults to an exit code of 0 and empty strings
for stdout/stderr).

This is relatively common - think “interrogative” commands where the caller only cares for a boolean result, or times
when a command is called purely for its side effects. To support this, there’s a shorthand in MockContext: passing
True or False to stand in for otherwise blank Results with exit codes of 0 or 1 respectively.

The example tests then look like this:

from invoke import MockContext, Result
from mytasks import replace

def test_regular_sed():
expected_sed = "sed -e s/foo/bar/g file.txt"
c = MockContext(run={

"which gsed": False,
expected_sed: True,

})
replace(c, 'file.txt', 'foo', 'bar')
c.run.assert_called_with(expected_sed)

def test_homebrew_gsed():
expected_sed = "gsed -e s/foo/bar/g file.txt"
c = MockContext(run={

"which gsed": True,
expected_sed: True,

})
replace(c, 'file.txt', 'foo', 'bar')
c.run.assert_called_with(expected_sed)

String mock results

Another convenient shorthand is using string values, which are interpreted to be the stdout of the resulting Result.
This only really saves you from writing out the class itself (since stdout is the first positional arg of Result!) but
“command X results in stdout Y” is a common enough use case that we implemented it anyway.

By example, let’s modify an earlier example where we cared about stdout:

from invoke import MockContext
from mytasks import get_platform

def test_get_platform_on_mac():
c = MockContext(run="Darwin\n")
assert "Apple" in get_platform(c)

def test_get_platform_on_linux():
c = MockContext(run="Linux\n")
assert "desktop" in get_platform(c)

As with everything else in this document, this tactic can be applied to iterators or mappings as well as individual values.

46 Chapter 3. Concepts

Invoke

Regular expression command matching

The dict form of MockContext kwarg can accept regular expression objects as keys, in addition to strings; ideal for
situations where you either don’t know the exact command being invoked, or simply don’t need or want to write out
the entire thing.

Imagine you’re writing a function to run package management commands on a few different Linux distros and you’re
trying to test its error handling. You might want to set up a context that pretends any arbitrary apt or yum command
fails, and ensure the function returns stderr when it encounters a problem:

import re
from invoke import MockContext
from mypackage.tasks import install

package_manager = re.compile(r"^(apt(-get)?|yum) .*")

def test_package_success_returns_True():
c = MockContext(run={package_manager: True})
assert install(c, package="somepackage") is True

def test_package_explosions_return_stderr():
c = MockContext(run={

package_manager: Result(stderr="oh no!", exited=1),
})
assert install(c, package="otherpackage") == "oh no!"

A bit contrived - there are a bunch of other ways to organize this exact test code so you don’t truly need the regex - but
hopefully it’s clear that when you do need this flexibility, this is how you could go about it.

Repeated results

By default, the values in these mock structures are consumed, causing MockContext to raise NotImplementedError
afterwards (as it does for any unexpected command executions). This was designed with the assumption that most code
under test will run a given command once.

If your situation doesn’t match this, give repeat=True to the constructor, and you’ll see values repeat indefinitely
instead (or in cycles, for iterables).

3.6.3 Expect Results

The core Invoke subprocess methods like run all return Result objects - which (as seen above) can be readily instan-
tiated by themselves with only partial data (e.g. standard output, but no exit code or standard error).

This means that well-organized code can be even easier to test and doesn’t require as much use of MockContext.

An iteration on the initial MockContext-using example above:

from invoke import task

@task
def get_platform(c):

print(platform_response(c.run("uname -s")))

def platform_response(result):
(continues on next page)

3.6. Testing Invoke-using codebases 47

Invoke

(continued from previous page)

uname = result.stdout.strip()
if uname == 'Darwin':

return "You paid the Apple tax!"
elif uname == 'Linux':

return "Year of Linux on the desktop!"

With the logic encapsulated in a subroutine, you can just unit test that function by itself, deferring testing of the task or
its context:

from invoke import Result
from mytasks import platform_response

def test_platform_response_on_mac():
assert "Apple" in platform_response(Result("Darwin\n"))

def test_platform_response_on_linux():
assert "desktop" in platform_response(Result("Linux\n"))

3.6.4 Avoid mocking dependency code paths altogether

This is more of a general software engineering tactic, but the natural endpoint of the above code examples would be
where your primary logic doesn’t care about Invoke at all – only about basic Python (or locally defined) data types.
This allows you to test logic in isolation and either ignore testing the Invoke side of things, or write targeted tests solely
for where your code interfaces with Invoke.

Another minor tweak to the task code:

from invoke import task

@task
def show_platform(c):

uname = c.run("uname -s").stdout.strip()
print(platform_response(uname))

def platform_response(uname):
if uname == 'Darwin':

return "You paid the Apple tax!"
elif uname == 'Linux':

return "Year of Linux on the desktop!"

And the tests:

from mytasks import platform_response

def test_platform_response_on_mac():
assert "Apple" in platform_response("Darwin\n")

def test_platform_response_on_linux():
assert "desktop" in platform_response("Linux\n")

48 Chapter 3. Concepts

Invoke

3.7 Automatically responding to program output

3.7.1 Background

Command-line programs tend to be designed for interactive shells, which frequently manifests as waiting around for
user input, or “prompts”. Well-designed programs offer options for pre-empting such prompts, resulting in an easily
automated workflow – but with the rest, interactivity is unavoidable.

Thankfully, Invoke’s Runner class not only forwards your standard input to the running program (allowing you to
manually respond to prompts) but it can also be configured to respond automatically on your behalf.

3.7.2 Basic use

The mechanism for this automation is the watchers kwarg to the Runner.run method (and its wrappers elsewhere,
such as Context.run and invoke.run), which is a list of StreamWatcher-subclass instances configured to watch
for patterns & respond accordingly. The simplest of these is Responder, which just replies with its configured response
every time its pattern is seen; others can be found in the watchers module.

Note: As with all other arguments to run, you can also set the default set of watchers globally via configuration files.

Take for example this program which expects a manual response to a yes/no prompt:

$ excitable-program
When you give the OK, I'm going to do the things. All of them!!
Are you ready? [Y/n] y
OK! I just did all sorts of neat stuff. You're welcome! Bye!

You could call run("excitable-program"), manually watch for the prompt, and mash Y by hand. But if you instead
supply a Responder like so:

@task
def always_ready(c):

responder = Responder(
pattern=r"Are you ready? \[Y/n\] ",
response="y\n",

)
c.run("excitable-program", watchers=[responder])

Then Runner passes the program’s stdout and stderr through responder, which watches for "Are you ready?
[Y/n] " and automatically writes y (plus \n to simulate hitting Enter/Return) to the program’s stdin.

Note: The pattern argument to Responder is treated as a regular expression, requiring more care (note how we
had to escape our square-brackets in the above example) but providing more power as well.

3.7. Automatically responding to program output 49

https://docs.python.org/2.7/library/re.html#module-re

Invoke

50 Chapter 3. Concepts

CHAPTER

FOUR

API

Know what you’re looking for & just need API details? View our auto-generated API documentation:

4.1 __init__

invoke.run(command: str, **kwargs: Any)→ Optional[invoke.runners.Result]
Run command in a subprocess and return a Result object.

See Runner.run for API details.

Note: This function is a convenience wrapper around Invoke’s Context and Runner APIs.

Specifically, it creates an anonymous Context instance and calls its run method, which in turn defaults to using
a Local runner subclass for command execution.

New in version 1.0.

invoke.sudo(command: str, **kwargs: Any)→ Optional[invoke.runners.Result]
Run command in a sudo subprocess and return a Result object.

See Context.sudo for API details, such as the password kwarg.

Note: This function is a convenience wrapper around Invoke’s Context and Runner APIs.

Specifically, it creates an anonymous Context instance and calls its sudo method, which in turn defaults to
using a Local runner subclass for command execution (plus sudo-related bits & pieces).

New in version 1.4.

4.2 collection

class invoke.collection.Collection(*args: Any, **kwargs: Any)
A collection of executable tasks. See Constructing namespaces.

New in version 1.0.

__eq__(other: object)→ bool
Return self==value.

51

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#bool

Invoke

__getitem__(name: Optional[str] = None)→ Any
Returns task named name. Honors aliases and subcollections.

If this collection has a default task, it is returned when name is empty or None. If empty input is given and
no task has been selected as the default, ValueError will be raised.

Tasks within subcollections should be given in dotted form, e.g. ‘foo.bar’. Subcollection default tasks will
be returned on the subcollection’s name.

New in version 1.0.

__hash__ = None

__repr__()→ str
Return repr(self).

add_collection(coll: invoke.collection.Collection, name: Optional[str] = None, default: Optional[bool] =
None)→ None

Add Collection coll as a sub-collection of this one.

Parameters
• coll – The Collection to add.

• name (str) – The name to attach the collection as. Defaults to the collection’s own internal
name.

• default – Whether this sub-collection(‘s default task-or-collection) should be the default
invocation of the parent collection.

New in version 1.0.

Changed in version 1.5: Added the default parameter.

add_task(task: invoke.tasks.Task, name: Optional[str] = None, aliases: Optional[Tuple[str, ...]] = None,
default: Optional[bool] = None)→ None

Add Task task to this collection.

Parameters
• task – The Task object to add to this collection.

• name – Optional string name to bind to (overrides the task’s own self-defined name attribute
and/or any Python identifier (i.e. .func_name.)

• aliases – Optional iterable of additional names to bind the task as, on top of the primary
name. These will be used in addition to any aliases the task itself declares internally.

• default – Whether this task should be the collection default.

New in version 1.0.

configuration(taskpath: Optional[str] = None)→ Dict[str, Any]
Obtain merged configuration values from collection & children.

Parameters taskpath – (Optional) Task name/path, identical to that used for __getitem__
(e.g. may be dotted for nested tasks, etc.) Used to decide which path to follow in the collection
tree when merging config values.

Returns A dict containing configuration values.

New in version 1.0.

configure(options: Dict[str, Any])→ None
(Recursively) merge options into the current configuration.

52 Chapter 4. API

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None

Invoke

Options configured this way will be available to all tasks. It is recommended to use unique keys to avoid
potential clashes with other config options

For example, if you were configuring a Sphinx docs build target directory, it’s better to use a key like
'sphinx.target' than simply 'target'.

Parameters options – An object implementing the dictionary protocol.

Returns None.
New in version 1.0.

classmethod from_module(module: module, name: Optional[str] = None, config: Optional[Dict[str,
Any]] = None, loaded_from: Optional[str] = None, auto_dash_names:
Optional[bool] = None)→ invoke.collection.Collection

Return a new Collection created from module.

Inspects module for any Task instances and adds them to a new Collection, returning it. If any explicit
namespace collections exist (named ns or namespace) a copy of that collection object is preferentially
loaded instead.

When the implicit/default collection is generated, it will be named after the module’s __name__ attribute,
or its last dotted section if it’s a submodule. (I.e. it should usually map to the actual .py filename.)

Explicitly given collections will only be given that module-derived name if they don’t already have a valid
.name attribute.

If the module has a docstring (__doc__) it is copied onto the resulting Collection (and used for display
in help, list etc output.)

Parameters
• name (str) – A string, which if given will override any automatically derived collection

name (or name set on the module’s root namespace, if it has one.)

• config (dict) – Used to set config options on the newly created Collection before
returning it (saving you a call to configure.)

If the imported module had a root namespace object, config is merged on top of it (i.e.
overriding any conflicts.)

• loaded_from (str) – Identical to the same-named kwarg from the regular class construc-
tor - should be the path where the module was found.

• auto_dash_names (bool) – Identical to the same-named kwarg from the regular class
constructor - determines whether emitted names are auto-dashed.

New in version 1.0.

serialized()→ Dict[str, Any]
Return an appropriate-for-serialization version of this object.

See the documentation for Program and its json task listing format; this method is the driver for that
functionality.

New in version 1.0.

subcollection_from_path(path: str)→ invoke.collection.Collection
Given a path to a subcollection, return that subcollection.

New in version 1.0.

property task_names: Dict[str, List[str]]
Return all task identifiers for this collection as a one-level dict.

4.2. collection 53

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Invoke

Specifically, a dict with the primary/”real” task names as the key, and any aliases as a list value.

It basically collapses the namespace tree into a single easily-scannable collection of invocation strings, and
is thus suitable for things like flat-style task listings or transformation into parser contexts.

New in version 1.0.

task_with_config(name: Optional[str])→ Tuple[str, Dict[str, Any]]
Return task named name plus its configuration dict.

E.g. in a deeply nested tree, this method returns the Task , and a configuration dict created by merging that
of this Collection and any nested Collections, up through the one actually holding the Task .

See __getitem__ for semantics of the name argument.

Returns Two-tuple of (Task , dict).

New in version 1.0.

to_contexts(ignore_unknown_help: Optional[bool] = None)→ List[invoke.parser.context.ParserContext]
Returns all contained tasks and subtasks as a list of parser contexts.

Parameters ignore_unknown_help (bool) – Passed on to each task’s get_arguments()
method. See the config option by the same name for details.

New in version 1.0.

Changed in version 1.7: Added the ignore_unknown_help kwarg.

transform(name: str)→ str
Transform name with the configured auto-dashes behavior.

If the collection’s auto_dash_names attribute is True (default), all non leading/trailing underscores are
turned into dashes. (Leading/trailing underscores tend to get stripped elsewhere in the stack.)

If it is False, the inverse is applied - all dashes are turned into underscores.

New in version 1.0.

4.3 config

exception invoke.config.AmbiguousMergeError

__weakref__
list of weak references to the object (if defined)

class invoke.config.Config(overrides: Optional[Dict[str, Any]] = None, defaults: Optional[Dict[str, Any]] =
None, system_prefix: Optional[str] = None, user_prefix: Optional[str] = None,
project_location: Optional[os.PathLike] = None, runtime_path:
Optional[os.PathLike] = None, lazy: bool = False)

Invoke’s primary configuration handling class.

See Configuration for details on the configuration system this class implements, including the configuration
hierarchy. The rest of this class’ documentation assumes familiarity with that document.

Access
Configuration values may be accessed and/or updated using dict syntax:

config['foo']

54 Chapter 4. API

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool

Invoke

or attribute syntax:

config.foo

Nesting works the same way - dict config values are turned into objects which honor both the dictionary protocol
and the attribute-access method:

config['foo']['bar']
config.foo.bar

A note about attribute access and methods
This class implements the entire dictionary protocol: methods such as keys, values, items, pop and so
forth should all function as they do on regular dicts. It also implements new config-specific methods such as
load_system , load_collection, merge, clone, etc.

Warning: Accordingly, this means that if you have configuration options sharing names with these methods,
you must use dictionary syntax (e.g. myconfig['keys']) to access the configuration data.

Lifecycle
At initialization time, Config:

• creates per-level data structures;

• stores any levels supplied to __init__, such as defaults or overrides, as well as the various config file
paths/filename patterns;

• and loads config files, if found (though typically this just means system and user-level files, as project and
runtime files need more info before they can be found and loaded.)

– This step can be skipped by specifying lazy=True.

At this point, Config is fully usable - and because it pre-emptively loads some config files, those config files can
affect anything that comes after, like CLI parsing or loading of task collections.

In the CLI use case, further processing is done after instantiation, using the load_* methods such as
load_overrides, load_project, etc:

• the result of argument/option parsing is applied to the overrides level;

• a project-level config file is loaded, as it’s dependent on a loaded tasks collection;

• a runtime config file is loaded, if its flag was supplied;

• then, for each task being executed:

– per-collection data is loaded (only possible now that we have collection & task in hand);

– shell environment data is loaded (must be done at end of process due to using the rest of the config as
a guide for interpreting env var names.)

At this point, the config object is handed to the task being executed, as part of its execution Context.

Any modifications made directly to the Config itself after this point end up stored in their own (topmost) config
level, making it easier to debug final values.

Finally, any deletions made to the Config (e.g. applications of dict-style mutators like pop, clear etc) are
also tracked in their own structure, allowing the config object to honor such method calls without mutating the
underlying source data.

Special class attributes

4.3. config 55

Invoke

The following class-level attributes are used for low-level configuration of the config system itself, such as which
file paths to load. They are primarily intended for overriding by subclasses.

• prefix: Supplies the default value for file_prefix (directly) and env_prefix (uppercased). See their
descriptions for details. Its default value is "invoke".

• file_prefix: The config file ‘basename’ default (though it is not a literal basename; it can contain path
parts if desired) which is appended to the configured values of system_prefix, user_prefix, etc, to
arrive at the final (pre-extension) file paths.

Thus, by default, a system-level config file path concatenates the system_prefix of /etc/ with the
file_prefix of invoke to arrive at paths like /etc/invoke.json.

Defaults to None, meaning to use the value of prefix.

• env_prefix: A prefix used (along with a joining underscore) to determine which environment variables
are loaded as the env var configuration level. Since its default is the value of prefix capitalized, this means
env vars like INVOKE_RUN_ECHO are sought by default.

Defaults to None, meaning to use the value of prefix.

New in version 1.0.

__init__(overrides: Optional[Dict[str, Any]] = None, defaults: Optional[Dict[str, Any]] = None,
system_prefix: Optional[str] = None, user_prefix: Optional[str] = None, project_location:
Optional[os.PathLike] = None, runtime_path: Optional[os.PathLike] = None, lazy: bool = False)

Creates a new config object.

Parameters
• defaults (dict) – A dict containing default (lowest level) config data. Default:
global_defaults.

• overrides (dict) – A dict containing override-level config data. Default: {}.

• system_prefix (str) – Base path for the global config file location; combined with the
prefix and file suffixes to arrive at final file path candidates.

Default: /etc/ (thus e.g. /etc/invoke.yaml or /etc/invoke.json).

• user_prefix (str) – Like system_prefix but for the per-user config file. These vari-
ables are joined as strings, not via path-style joins, so they may contain partial file paths;
for the per-user config file this often means a leading dot, to make the final result a hidden
file on most systems.

Default: ~/. (e.g. ~/.invoke.yaml).

• project_location (str) – Optional directory path of the currently loaded Collection
(as loaded by Loader). When non-empty, will trigger seeking of per-project config files in
this directory.

• runtime_path (str) – Optional file path to a runtime configuration file.

Used to fill the penultimate slot in the config hierarchy. Should be a full file path to an
existing file, not a directory path or a prefix.

• lazy (bool) – Whether to automatically load some of the lower config levels.

By default (lazy=False), __init__ automatically calls load_system and load_user
to load system and user config files, respectively.

For more control over what is loaded when, you can say lazy=True, and no automatic
loading is done.

56 Chapter 4. API

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool

Invoke

Note: If you give defaults and/or overrides as __init__ kwargs instead of waiting
to use load_defaults or load_overrides afterwards, those will still end up ‘loaded’
immediately.

clone(into: Optional[Type[invoke.config.Config]] = None)→ invoke.config.Config
Return a copy of this configuration object.

The new object will be identical in terms of configured sources and any loaded (or user-manipulated) data,
but will be a distinct object with as little shared mutable state as possible.

Specifically, all dict values within the config are recursively recreated, with non-dict leaf values subjected
to copy.copy (note: not copy.deepcopy, as this can cause issues with various objects such as compiled
regexen or threading locks, often found buried deep within rich aggregates like API or DB clients).

The only remaining config values that may end up shared between a config and its clone are thus those
‘rich’ objects that do not copy.copy cleanly, or compound non-dict objects (such as lists or tuples).

Parameters into – A Config subclass that the new clone should be “upgraded” to.

Used by client libraries which have their own Config subclasses that e.g. define additional
defaults; cloning “into” one of these subclasses ensures that any new keys/subtrees are added
gracefully, without overwriting anything that may have been pre-defined.

Default: None (just clone into another regular Config).

Returns A Config, or an instance of the class given to into.

Raises TypeError, if into is given a value and that value is not a Config subclass.

New in version 1.0.

static global_defaults()→ Dict[str, Any]
Return the core default settings for Invoke.

Generally only for use by Config internals. For descriptions of these values, see Default configuration
values.

Subclasses may choose to override this method, calling Config.global_defaults and applying
merge_dicts to the result, to add to or modify these values.

New in version 1.0.

load_collection(data: Dict[str, Any], merge: bool = True)→ None
Update collection-driven config data.

load_collection is intended for use by the core task execution machinery, which is responsible for
obtaining collection-driven data. See Collection-based configuration for details.

New in version 1.0.

load_defaults(data: Dict[str, Any], merge: bool = True)→ None
Set or replace the ‘defaults’ configuration level, from data.

Parameters
• data (dict) – The config data to load as the defaults level.

• merge (bool) – Whether to merge the loaded data into the central config. Default: True.

Returns None.
New in version 1.0.

4.3. config 57

https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/copy.html#copy.copy
https://docs.python.org/2.7/library/copy.html#copy.deepcopy
https://docs.python.org/2.7/library/copy.html#copy.copy
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#bool

Invoke

load_overrides(data: Dict[str, Any], merge: bool = True)→ None
Set or replace the ‘overrides’ configuration level, from data.

Parameters
• data (dict) – The config data to load as the overrides level.

• merge (bool) – Whether to merge the loaded data into the central config. Default: True.

Returns None.
New in version 1.0.

load_project(merge: bool = True)→ None
Load a project-level config file, if possible.

Checks the configured _project_prefix value derived from the path given to set_project_location,
which is typically set to the directory containing the loaded task collection.

Thus, if one were to run the CLI tool against a tasks collection /home/myuser/code/tasks.py,
load_project would seek out files like /home/myuser/code/invoke.yml.

Parameters merge (bool) – Whether to merge the loaded data into the central config. Default:
True.

Returns None.
New in version 1.0.

load_runtime(merge: bool = True)→ None
Load a runtime-level config file, if one was specified.

When the CLI framework creates a Config, it sets _runtime_path, which is a full path to the requested
config file. This method attempts to load that file.

Parameters merge (bool) – Whether to merge the loaded data into the central config. Default:
True.

Returns None.
New in version 1.0.

load_shell_env()→ None
Load values from the shell environment.

load_shell_env is intended for execution late in a Config object’s lifecycle, once all other sources (such
as a runtime config file or per-collection configurations) have been loaded. Loading from the shell is not
terrifically expensive, but must be done at a specific point in time to ensure the “only known config keys
are loaded from the env” behavior works correctly.

See Environment variables for details on this design decision and other info re: how environment variables
are scanned and loaded.

New in version 1.0.

load_system(merge: bool = True)→ None
Load a system-level config file, if possible.

Checks the configured _system_prefix path, which defaults to /etc, and will thus load files like /etc/
invoke.yml.

Parameters merge (bool) – Whether to merge the loaded data into the central config. Default:
True.

Returns None.

58 Chapter 4. API

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#bool

Invoke

New in version 1.0.

load_user(merge: bool = True)→ None
Load a user-level config file, if possible.

Checks the configured _user_prefix path, which defaults to ~/., and will thus load files like ~/.invoke.
yml.

Parameters merge (bool) – Whether to merge the loaded data into the central config. Default:
True.

Returns None.
New in version 1.0.

merge()→ None
Merge all config sources, in order.

New in version 1.0.

set_project_location(path: Optional[Union[os.PathLike, str]])→ None
Set the directory path where a project-level config file may be found.

Does not do any file loading on its own; for that, see load_project.

New in version 1.0.

set_runtime_path(path: Optional[os.PathLike])→ None
Set the runtime config file path.

New in version 1.0.

class invoke.config.DataProxy
Helper class implementing nested dict+attr access for Config.

Specifically, is used both for Config itself, and to wrap any other dicts assigned as config values (recursively).

Warning: All methods (of this object or in subclasses) must take care to initialize new attributes via self.
_set(name='value'), or they’ll run into recursion errors!

New in version 1.0.

__delattr__(name: str)→ None
Implement delattr(self, name).

__eq__(other: object)→ bool
Return self==value.

__hash__ = None

__repr__()→ str
Return repr(self).

__setattr__(key: str, value: Any)→ None
Implement setattr(self, name, value).

__weakref__
list of weak references to the object (if defined)

classmethod from_data(data: Dict[str, Any], root: Optional[invoke.config.DataProxy] = None, keypath:
Tuple[str, ...] = ())→ invoke.config.DataProxy

Alternate constructor for ‘baby’ DataProxies used as sub-dict values.

4.3. config 59

https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Invoke

Allows creating standalone DataProxy objects while also letting subclasses like Config define their own
__init__ without muddling the two.

Parameters
• data (dict) – This particular DataProxy’s personal data. Required, it’s the Data being

Proxied.

• root – Optional handle on a root DataProxy/Config which needs notification on data up-
dates.

• keypath (tuple) – Optional tuple describing the path of keys leading to this DataProxy’s
location inside the root structure. Required if root was given (and vice versa.)

New in version 1.0.

invoke.config.copy_dict(source: Dict[str, Any])→ Dict[str, Any]
Return a fresh copy of source with as little shared state as possible.

Uses merge_dicts under the hood, with an empty base dict; see its documentation for details on behavior.

New in version 1.0.

invoke.config.excise(dict_: Dict[str, Any], keypath: Tuple[str, ...]) → None
Remove key pointed at by keypath from nested dict dict_, if exists.

New in version 1.0.

invoke.config.merge_dicts(base: Dict[str, Any], updates: Dict[str, Any])→ Dict[str, Any]
Recursively merge dict updates into dict base (mutating base.)

• Values which are themselves dicts will be recursed into.

• Values which are a dict in one input and not a dict in the other input (e.g. if our inputs were {'foo': 5}
and {'foo': {'bar': 5}}) are irreconciliable and will generate an exception.

• Non-dict leaf values are run through copy.copy to avoid state bleed.

Note: This is effectively a lightweight copy.deepcopy which offers protection from mismatched types (dict
vs non-dict) and avoids some core deepcopy problems (such as how it explodes on certain object types).

Returns The value of base, which is mostly useful for wrapper functions like copy_dict.

New in version 1.0.

invoke.config.obliterate(base: Dict[str, Any], deletions: Dict[str, Any])→ None
Remove all (nested) keys mentioned in deletions, from base.

New in version 1.0.

60 Chapter 4. API

https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/copy.html#copy.copy
https://docs.python.org/2.7/library/copy.html#copy.deepcopy
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None

Invoke

4.4 context

class invoke.context.Context(config: Optional[invoke.config.Config] = None)
Context-aware API wrapper & state-passing object.

Context objects are created during command-line parsing (or, if desired, by hand) and used to share parser and
configuration state with executed tasks (see Aside: what exactly is this ‘context’ arg anyway?).

Specifically, the class offers wrappers for core API calls (such as run) which take into account CLI parser flags,
configuration files, and/or changes made at runtime. It also acts as a proxy for its config attribute - see that
attribute’s documentation for details.

Instances of Context may be shared between tasks when executing sub-tasks - either the same context the caller
was given, or an altered copy thereof (or, theoretically, a brand new one).

New in version 1.0.

__init__(config: Optional[invoke.config.Config] = None)→ None

Parameters config – Config object to use as the base configuration.

Defaults to an anonymous/default Config instance.

cd(path: Union[os.PathLike, str])→ Generator[None, None, None]
Context manager that keeps directory state when executing commands.

Any calls to run, sudo, within the wrapped block will implicitly have a string similar to "cd <path> &&
" prefixed in order to give the sense that there is actually statefulness involved.

Because use of cd affects all such invocations, any code making use of the cwd property will also be affected
by use of cd .

Like the actual ‘cd’ shell builtin, cd may be called with relative paths (keep in mind that your default
starting directory is your user’s $HOME) and may be nested as well.

Below is a “normal” attempt at using the shell ‘cd’, which doesn’t work since all commands are executed
in individual subprocesses – state is not kept between invocations of run or sudo:

c.run('cd /var/www')
c.run('ls')

The above snippet will list the contents of the user’s $HOME instead of /var/www. With cd , however, it will
work as expected:

with c.cd('/var/www'):
c.run('ls') # Turns into "cd /var/www && ls"

Finally, a demonstration (see inline comments) of nesting:

with c.cd('/var/www'):
c.run('ls') # cd /var/www && ls
with c.cd('website1'):

c.run('ls') # cd /var/www/website1 && ls

Note: Space characters will be escaped automatically to make dealing with such directory names easier.

New in version 1.0.

4.4. context 61

https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/constants.html#None

Invoke

Changed in version 1.5: Explicitly cast the path argument (the only argument) to a string; this allows any
object defining __str__ to be handed in (such as the various Path objects out there), and not just string
literals.

property cwd: str
Return the current working directory, accounting for uses of cd .

New in version 1.0.

prefix(command: str)→ Generator[None, None, None]
Prefix all nested run/sudo commands with given command plus &&.

Most of the time, you’ll want to be using this alongside a shell script which alters shell state, such as ones
which export or alter shell environment variables.

For example, one of the most common uses of this tool is with the workon command from virtualenvwrap-
per:

with c.prefix('workon myvenv'):
c.run('./manage.py migrate')

In the above snippet, the actual shell command run would be this:

$ workon myvenv && ./manage.py migrate

This context manager is compatible with cd , so if your virtualenv doesn’t cd in its postactivate script,
you could do the following:

with c.cd('/path/to/app'):
with c.prefix('workon myvenv'):

c.run('./manage.py migrate')
c.run('./manage.py loaddata fixture')

Which would result in executions like so:

$ cd /path/to/app && workon myvenv && ./manage.py migrate
$ cd /path/to/app && workon myvenv && ./manage.py loaddata fixture

Finally, as alluded to above, prefix may be nested if desired, e.g.:

with c.prefix('workon myenv'):
c.run('ls')
with c.prefix('source /some/script'):

c.run('touch a_file')

The result:

$ workon myenv && ls
$ workon myenv && source /some/script && touch a_file

Contrived, but hopefully illustrative.

New in version 1.0.

run(command: str, **kwargs: Any)→ Optional[invoke.runners.Result]
Execute a local shell command, honoring config options.

Specifically, this method instantiates a Runner subclass (according to the runner config option; default is
Local) and calls its .run method with command and kwargs.

62 Chapter 4. API

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/constants.html#None
https://virtualenvwrapper.readthedocs.io/en/latest/
https://virtualenvwrapper.readthedocs.io/en/latest/
https://docs.python.org/2.7/library/functions.html#str

Invoke

See Runner.run for details on command and the available keyword arguments.

New in version 1.0.

sudo(command: str, **kwargs: Any)→ Optional[invoke.runners.Result]
Execute a shell command via sudo with password auto-response.

Basics
This method is identical to run but adds a handful of convenient behaviors around invoking the sudo
program. It doesn’t do anything users could not do themselves by wrapping run, but the use case is too
common to make users reinvent these wheels themselves.

Note: If you intend to respond to sudo’s password prompt by hand, just use run("sudo command")
instead! The autoresponding features in this method will just get in your way.

Specifically, sudo:

• Places a FailingResponder into the watchers kwarg (see Automatically responding to program
output) which:

– searches for the configured sudo password prompt;

– responds with the configured sudo password (sudo.password from the configuration);

– can tell when that response causes an authentication failure (e.g. if the system requires a password
and one was not configured), and raises AuthFailure if so.

• Builds a sudo command string using the supplied command argument, prefixed by various flags (see
below);

• Executes that command via a call to run, returning the result.

Flags used
sudo flags used under the hood include:

• -S to allow auto-responding of password via stdin;

• -p <prompt> to explicitly state the prompt to use, so we can be sure our auto-responder knows what
to look for;

• -u <user> if user is not None, to execute the command as a user other than root;

• When -u is present, -H is also added, to ensure the subprocess has the requested user’s $HOME set
properly.

Configuring behavior
There are a couple of ways to change how this method behaves:

• Because it wraps run, it honors all run config parameters and keyword arguments, in the same way
that run does.

– Thus, invocations such as c.sudo('command', echo=True) are possible, and if a config layer
(such as a config file or env var) specifies that e.g. run.warn = True, that too will take effect
under sudo.

• sudo has its own set of keyword arguments (see below) and they are also all controllable via the
configuration system, under the sudo.* tree.

– Thus you could, for example, pre-set a sudo user in a config file; such as an invoke.json con-
taining {"sudo": {"user": "someuser"}}.

4.4. context 63

https://docs.python.org/2.7/library/functions.html#str

Invoke

Parameters
• password (str) – Runtime override for sudo.password.

• user (str) – Runtime override for sudo.user.

New in version 1.0.

class invoke.context.MockContext(config: Optional[invoke.config.Config] = None, **kwargs: Any)
A Context whose methods’ return values can be predetermined.

Primarily useful for testing Invoke-using codebases.

Note: This class wraps its run, etc methods in unittest.mock.Mock objects. This allows you to easily assert
that the methods (still returning the values you prepare them with) were actually called.

Note: Methods not given Results to yield will raise NotImplementedError if called (since the alternative is
to call the real underlying method - typically undesirable when mocking.)

New in version 1.0.

Changed in version 1.5: Added Mock wrapping of run and sudo.

__init__(config: Optional[invoke.config.Config] = None, **kwargs: Any)→ None
Create a Context-like object whose methods yield Result objects.

Parameters
• config – A Configuration object to use. Identical in behavior to Context.

• run – A data structure indicating what Result objects to return from calls to the instanti-
ated object’s run method (instead of actually executing the requested shell command).

Specifically, this kwarg accepts:

– A single Result object.

– A boolean; if True, yields a Result whose exited is 0, and if False, 1.

– An iterable of the above values, which will be returned on each subsequent call to .run
(the first item on the first call, the second on the second call, etc).

– A dict mapping command strings or compiled regexen to the above values (including an
iterable), allowing specific call-and-response semantics instead of assuming a call order.

• sudo – Identical to run, but whose values are yielded from calls to sudo.

• repeat (bool) – A flag determining whether results yielded by this class’ methods repeat
or are consumed.

For example, when a single result is indicated, it will normally only be returned once,
causing NotImplementedError afterwards. But when repeat=True is given, that result
is returned on every call, forever.

Similarly, iterable results are normally exhausted once, but when this setting is enabled,
they are wrapped in itertools.cycle.

Default: True.

Raises TypeError, if the values given to run or other kwargs aren’t of the expected types.

64 Chapter 4. API

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/itertools.html#itertools.cycle

Invoke

Changed in version 1.5: Added support for boolean and string result values.

Changed in version 1.5: Added support for regex dict keys.

Changed in version 1.5: Added the repeat keyword argument.

Changed in version 2.0: Changed repeat default value from False to True.

run(command: str, *args: Any, **kwargs: Any)→ invoke.runners.Result
Execute a local shell command, honoring config options.

Specifically, this method instantiates a Runner subclass (according to the runner config option; default is
Local) and calls its .run method with command and kwargs.

See Runner.run for details on command and the available keyword arguments.

New in version 1.0.

set_result_for(attname: str, command: str, result: invoke.runners.Result)→ None
Modify the stored mock results for given attname (e.g. run).

This is similar to how one instantiates MockContext with a run or sudo dict kwarg. For example, this:

mc = MockContext(run={'mycommand': Result("mystdout")})
assert mc.run('mycommand').stdout == "mystdout"

is functionally equivalent to this:

mc = MockContext()
mc.set_result_for('run', 'mycommand', Result("mystdout"))
assert mc.run('mycommand').stdout == "mystdout"

set_result_for is mostly useful for modifying an already-instantiated MockContext, such as one cre-
ated by test setup or helper methods.

New in version 1.0.

sudo(command: str, *args: Any, **kwargs: Any)→ invoke.runners.Result
Execute a shell command via sudo with password auto-response.

Basics
This method is identical to run but adds a handful of convenient behaviors around invoking the sudo
program. It doesn’t do anything users could not do themselves by wrapping run, but the use case is too
common to make users reinvent these wheels themselves.

Note: If you intend to respond to sudo’s password prompt by hand, just use run("sudo command")
instead! The autoresponding features in this method will just get in your way.

Specifically, sudo:

• Places a FailingResponder into the watchers kwarg (see Automatically responding to program
output) which:

– searches for the configured sudo password prompt;

– responds with the configured sudo password (sudo.password from the configuration);

– can tell when that response causes an authentication failure (e.g. if the system requires a password
and one was not configured), and raises AuthFailure if so.

4.4. context 65

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str

Invoke

• Builds a sudo command string using the supplied command argument, prefixed by various flags (see
below);

• Executes that command via a call to run, returning the result.

Flags used
sudo flags used under the hood include:

• -S to allow auto-responding of password via stdin;

• -p <prompt> to explicitly state the prompt to use, so we can be sure our auto-responder knows what
to look for;

• -u <user> if user is not None, to execute the command as a user other than root;

• When -u is present, -H is also added, to ensure the subprocess has the requested user’s $HOME set
properly.

Configuring behavior
There are a couple of ways to change how this method behaves:

• Because it wraps run, it honors all run config parameters and keyword arguments, in the same way
that run does.

– Thus, invocations such as c.sudo('command', echo=True) are possible, and if a config layer
(such as a config file or env var) specifies that e.g. run.warn = True, that too will take effect
under sudo.

• sudo has its own set of keyword arguments (see below) and they are also all controllable via the
configuration system, under the sudo.* tree.

– Thus you could, for example, pre-set a sudo user in a config file; such as an invoke.json con-
taining {"sudo": {"user": "someuser"}}.

Parameters
• password (str) – Runtime override for sudo.password.

• user (str) – Runtime override for sudo.user.

New in version 1.0.

4.5 exceptions

Custom exception classes.

These vary in use case from “we needed a specific data structure layout in exceptions used for message-passing” to
simply “we needed to express an error condition in a way easily told apart from other, truly unexpected errors”.

exception invoke.exceptions.AmbiguousEnvVar
Raised when loading env var config keys has an ambiguous target.

New in version 1.0.

__weakref__
list of weak references to the object (if defined)

exception invoke.exceptions.AuthFailure(result: Result, prompt: str)
An authentication failure, e.g. due to an incorrect sudo password.

66 Chapter 4. API

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Invoke

Note: Result objects attached to these exceptions typically lack exit code information, since the command was
never fully executed - the exception was raised instead.

New in version 1.0.

__init__(result: Result, prompt: str)→ None

__str__()→ str
Return str(self).

exception invoke.exceptions.CollectionNotFound(name: str, start: str)

__init__(name: str, start: str)→ None

__weakref__
list of weak references to the object (if defined)

exception invoke.exceptions.CommandTimedOut(result: Result, timeout: int)
Raised when a subprocess did not exit within a desired timeframe.

__init__(result: Result, timeout: int)→ None

__repr__()→ str
Return repr(self).

__str__()→ str
Return str(self).

exception invoke.exceptions.Exit(message: Optional[str] = None, code: Optional[int] = None)
Simple custom stand-in for SystemExit.

Replaces scattered sys.exit calls, improves testability, allows one to catch an exit request without intercepting real
SystemExits (typically an unfriendly thing to do, as most users calling sys.exit rather expect it to truly exit.)

Defaults to a non-printing, exit-0 friendly termination behavior if the exception is uncaught.

If code (an int) given, that code is used to exit.

If message (a string) given, it is printed to standard error, and the program exits with code 1 by default (unless
overridden by also giving code explicitly.)

New in version 1.0.

__init__(message: Optional[str] = None, code: Optional[int] = None)→ None

__weakref__
list of weak references to the object (if defined)

exception invoke.exceptions.Failure(result: Result, reason: Optional[WatcherError] = None)
Exception subclass representing failure of a command execution.

“Failure” may mean the command executed and the shell indicated an unusual result (usually, a non-zero exit
code), or it may mean something else, like a sudo command which was aborted when the supplied password
failed authentication.

Two attributes allow introspection to determine the nature of the problem:

• result: a Result instance with info about the command being executed and, if it ran to completion, how
it exited.

4.5. exceptions 67

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/sys.html#sys.exit
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/constants.html#None

Invoke

• reason: a wrapped exception instance if applicable (e.g. a StreamWatcher raised WatcherError) or
None otherwise, in which case, it’s probably a Failure subclass indicating its own specific nature, such
as UnexpectedExit or CommandTimedOut.

This class is only rarely raised by itself; most of the time Runner.run (or a wrapper of same, such as Context.
sudo) will raise a specific subclass like UnexpectedExit or AuthFailure.

New in version 1.0.

__init__(result: Result, reason: Optional[WatcherError] = None)→ None

__repr__()→ str
Return repr(self).

__weakref__
list of weak references to the object (if defined)

streams_for_display()→ Tuple[str, str]
Return stdout/err streams as necessary for error display.

Subject to the following rules:

• If a given stream was not hidden during execution, a placeholder is used instead, to avoid printing it
twice.

• Only the last 10 lines of stream text is included.

• PTY-driven execution will lack stderr, and a specific message to this effect is returned instead of a
stderr dump.

Returns Two-tuple of stdout, stderr strings.

New in version 1.3.

exception invoke.exceptions.ParseError(msg: str, context: Optional[ParserContext] = None)
An error arising from the parsing of command-line flags/arguments.

Ambiguous input, invalid task names, invalid flags, etc.

New in version 1.0.

__init__(msg: str, context: Optional[ParserContext] = None)→ None

__weakref__
list of weak references to the object (if defined)

exception invoke.exceptions.PlatformError
Raised when an illegal operation occurs for the current platform.

E.g. Windows users trying to use functionality requiring the pty module.

Typically used to present a clearer error message to the user.

New in version 1.0.

__weakref__
list of weak references to the object (if defined)

exception invoke.exceptions.ResponseNotAccepted
A responder/watcher class noticed a ‘bad’ response to its submission.

Mostly used by FailingResponder and subclasses, e.g. “oh dear I autosubmitted a sudo password and it was
incorrect.”

New in version 1.0.

68 Chapter 4. API

https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None

Invoke

exception invoke.exceptions.SubprocessPipeError
Some problem was encountered handling subprocess pipes (stdout/err/in).

Typically only for corner cases; most of the time, errors in this area are raised by the interpreter or the operating
system, and end up wrapped in a ThreadException.

New in version 1.3.

__weakref__
list of weak references to the object (if defined)

exception invoke.exceptions.ThreadException(exceptions: List[ExceptionWrapper])
One or more exceptions were raised within background threads.

The real underlying exceptions are stored in the exceptions attribute; see its documentation for data structure
details.

Note: Threads which did not encounter an exception, do not contribute to this exception object and thus are not
present inside exceptions.

New in version 1.0.

__init__(exceptions: List[ExceptionWrapper])→ None

__str__()→ str
Return str(self).

__weakref__
list of weak references to the object (if defined)

exceptions: Tuple[ExceptionWrapper, ...] = ()
A tuple of ExceptionWrappers containing the initial thread constructor kwargs (because threading.
Thread subclasses should always be called with kwargs) and the caught exception for that thread as seen
by sys.exc_info (so: type, value, traceback).

Note: The ordering of this attribute is not well-defined.

Note: Thread kwargs which appear to be very long (e.g. IO buffers) will be truncated when printed, to
avoid huge unreadable error display.

exception invoke.exceptions.UncastableEnvVar
Raised on attempted env var loads whose default values are too rich.

E.g. trying to stuff MY_VAR="foo" into {'my_var': ['uh', 'oh']} doesn’t make any sense until/if we
implement some sort of transform option.

New in version 1.0.

__weakref__
list of weak references to the object (if defined)

exception invoke.exceptions.UnexpectedExit(result: Result, reason: Optional[WatcherError] = None)
A shell command ran to completion but exited with an unexpected exit code.

Its string representation displays the following:

• Command executed;

4.5. exceptions 69

https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/threading.html#threading.Thread
https://docs.python.org/2.7/library/threading.html#threading.Thread
https://docs.python.org/2.7/library/sys.html#sys.exc_info

Invoke

• Exit code;

• The last 10 lines of stdout, if it was hidden;

• The last 10 lines of stderr, if it was hidden and non-empty (e.g. pty=False; when pty=True, stderr never
happens.)

New in version 1.0.

__str__()→ str
Return str(self).

exception invoke.exceptions.UnknownFileType
A config file of an unknown type was specified and cannot be loaded.

New in version 1.0.

__weakref__
list of weak references to the object (if defined)

exception invoke.exceptions.UnpicklableConfigMember
A config file contained module objects, which can’t be pickled/copied.

We raise this more easily catchable exception instead of letting the (unclearly phrased) TypeError bubble out of
the pickle module. (However, to avoid our own fragile catching of that error, we head it off by explicitly testing
for module members.)

New in version 1.0.2.

__weakref__
list of weak references to the object (if defined)

exception invoke.exceptions.WatcherError
Generic parent exception class for StreamWatcher-related errors.

Typically, one of these exceptions indicates a StreamWatcher noticed something anomalous in an output stream,
such as an authentication response failure.

Runner catches these and attaches them to Failure exceptions so they can be referenced by intermediate code
and/or act as extra info for end users.

New in version 1.0.

__weakref__
list of weak references to the object (if defined)

4.6 executor

class invoke.executor.Executor(collection: Collection, config: Optional[Config] = None, core:
Optional[ParseResult] = None)

An execution strategy for Task objects.

Subclasses may override various extension points to change, add or remove behavior.

New in version 1.0.

__init__(collection: Collection, config: Optional[Config] = None, core: Optional[ParseResult] = None)→
None

Initialize executor with handles to necessary data structures.

Parameters

70 Chapter 4. API

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None

Invoke

• collection – A Collection used to look up requested tasks (and their default config
data, if any) by name during execution.

• config – An optional Config holding configuration state. Defaults to an empty Config
if not given.

• core – An optional ParseResult holding parsed core program arguments. Defaults to
None.

__weakref__
list of weak references to the object (if defined)

dedupe(calls: List[invoke.tasks.Call])→ List[invoke.tasks.Call]
Deduplicate a list of tasks.

Parameters calls – An iterable of Call objects representing tasks.

Returns A list of Call objects.

New in version 1.0.

execute(*tasks: Union[str, Tuple[str, Dict[str, Any]], invoke.parser.context.ParserContext])→ Dict[Task,
Result]

Execute one or more tasks in sequence.

Parameters tasks – An all-purpose iterable of “tasks to execute”, each member of which may
take one of the following forms:

A string naming a task from the Executor’s Collection. This name may contain dotted
syntax appropriate for calling namespaced tasks, e.g. subcollection.taskname. Such
tasks are executed without arguments.

A two-tuple whose first element is a task name string (as above) and whose second element
is a dict suitable for use as **kwargs when calling the named task. E.g.:

[
('task1', {}),
('task2', {'arg1': 'val1'}),
...

]

is equivalent, roughly, to:

task1()
task2(arg1='val1')

A `.ParserContext` instance, whose .name attribute is used as the task name and whose
.as_kwargs attribute is used as the task kwargs (again following the above specifications).

Note: When called without any arguments at all (i.e. when *tasks is empty), the default
task from self.collection is used instead, if defined.

Returns
A dict mapping task objects to their return values.

This dict may include pre- and post-tasks if any were executed. For example, in a collection
with a build task depending on another task named setup, executing build will result in a
dict with two keys, one for build and one for setup.

4.6. executor 71

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Invoke

New in version 1.0.

expand_calls(calls: List[invoke.tasks.Call])→ List[invoke.tasks.Call]
Expand a list of Call objects into a near-final list of same.

The default implementation of this method simply adds a task’s pre/post-task list before/after the task itself,
as necessary.

Subclasses may wish to do other things in addition (or instead of) the above, such as multiplying the calls
by argument vectors or similar.

New in version 1.0.

normalize(tasks: Tuple[Union[str, Tuple[str, Dict[str, Any]], invoke.parser.context.ParserContext], ...]) →
List[invoke.tasks.Call]

Transform arbitrary task list w/ various types, into Call objects.

See docstring for execute for details.

New in version 1.0.

4.7 loader

class invoke.loader.Loader(config: Optional[invoke.config.Config] = None)
Abstract class defining how to find/import a session’s base Collection.

New in version 1.0.

__init__(config: Optional[invoke.config.Config] = None)→ None
Set up a new loader with some Config.

Parameters config – An explicit Config to use; it is referenced for loading-related config op-
tions. Defaults to an anonymous Config() if none is given.

find(name: str)→ Optional[_frozen_importlib.ModuleSpec]
Implementation-specific finder method seeking collection name.

Must return a ModuleSpec valid for use by importlib, which is typically a name string followed by the
contents of the 3-tuple returned by importlib.module_from_spec (name, loader, origin.)

For a sample implementation, see FilesystemLoader.

New in version 1.0.

load(name: Optional[str] = None)→ Tuple[module, str]
Load and return collection module identified by name.

This method requires a working implementation of find in order to function.

In addition to importing the named module, it will add the module’s parent directory to the front of sys.
path to provide normal Python import behavior (i.e. so the loaded module may load local-to-it modules
or packages.)

Returns Two-tuple of (module, directory) where module is the collection-containing
Python module object, and directory is the string path to the directory the module was
found in.

New in version 1.0.

class invoke.loader.FilesystemLoader(start: Optional[str] = None, **kwargs: Any)
Loads Python files from the filesystem (e.g. tasks.py.)

Searches recursively towards filesystem root from a given start point.

72 Chapter 4. API

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/importlib.html#module-importlib
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/sys.html#sys.path
https://docs.python.org/2.7/library/sys.html#sys.path
https://docs.python.org/2.7/library/functions.html#str

Invoke

New in version 1.0.

__init__(start: Optional[str] = None, **kwargs: Any)→ None
Set up a new loader with some Config.

Parameters config – An explicit Config to use; it is referenced for loading-related config op-
tions. Defaults to an anonymous Config() if none is given.

find(name: str)→ Optional[_frozen_importlib.ModuleSpec]
Implementation-specific finder method seeking collection name.

Must return a ModuleSpec valid for use by importlib, which is typically a name string followed by the
contents of the 3-tuple returned by importlib.module_from_spec (name, loader, origin.)

For a sample implementation, see FilesystemLoader.

New in version 1.0.

4.8 parser

The command-line parsing framework is split up into a handful of sub-modules:

• parser.argument

• parser.context (not to be confused with the top level context!)

• parser.parser

API docs for all are below.

class invoke.parser.parser.ParseResult(*args: Any, **kwargs: Any)
List-like object with some extra parse-related attributes.

Specifically, a .remainder attribute, which is the string found after a -- in any parsed argv list; and an .
unparsed attribute, a list of tokens that were unable to be parsed.

New in version 1.0.

__init__(*args: Any, **kwargs: Any)→ None

__weakref__
list of weak references to the object (if defined)

class invoke.parser.parser.Parser(contexts: Iterable[ParserContext] = (), initial: Optional[ParserContext]
= None, ignore_unknown: bool = False)

Create parser conscious of contexts and optional initial context.

contexts should be an iterable of Context instances which will be searched when new context names are
encountered during a parse. These Contexts determine what flags may follow them, as well as whether given
flags take values.

initial is optional and will be used to determine validity of “core” options/flags at the start of the parse run, if
any are encountered.

ignore_unknown determines what to do when contexts are found which do not map to any members of
contexts. By default it is False, meaning any unknown contexts result in a parse error exception. If True,
encountering an unknown context halts parsing and populates the return value’s .unparsed attribute with the
remaining parse tokens.

New in version 1.0.

__init__(contexts: Iterable[ParserContext] = (), initial: Optional[ParserContext] = None, ignore_unknown:
bool = False)→ None

4.8. parser 73

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/importlib.html#module-importlib
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/constants.html#None

Invoke

parse_argv(argv: List[str])→ invoke.parser.parser.ParseResult
Parse an argv-style token list argv.

Returns a list (actually a subclass, ParseResult) of ParserContext objects matching the order they were
found in the argv and containing Argument objects with updated values based on any flags given.

Assumes any program name has already been stripped out. Good:

Parser(...).parse_argv(['--core-opt', 'task', '--task-opt'])

Bad:

Parser(...).parse_argv(['invoke', '--core-opt', ...])

Parameters argv – List of argument string tokens.

Returns A ParseResult (a list subclass containing some number of ParserContext ob-
jects).

New in version 1.0.

__weakref__
list of weak references to the object (if defined)

class invoke.parser.context.ParserContext(name: Optional[str] = None, aliases: Iterable[str] = (), args:
Iterable[invoke.parser.argument.Argument] = ())

Parsing context with knowledge of flags & their format.

Generally associated with the core program or a task.

When run through a parser, will also hold runtime values filled in by the parser.

New in version 1.0.

__init__(name: Optional[str] = None, aliases: Iterable[str] = (), args:
Iterable[invoke.parser.argument.Argument] = ())→ None

Create a new ParserContext named name, with aliases.

name is optional, and should be a string if given. It’s used to tell ParserContext objects apart, and for use
in a Parser when determining what chunk of input might belong to a given ParserContext.

aliases is also optional and should be an iterable containing strings. Parsing will honor any aliases when
trying to “find” a given context in its input.

May give one or more args, which is a quick alternative to calling for arg in args: self.
add_arg(arg) after initialization.

__repr__()→ str
Return repr(self).

__weakref__
list of weak references to the object (if defined)

add_arg(*args: Any, **kwargs: Any)→ None
Adds given Argument (or constructor args for one) to this context.

The Argument in question is added to the following dict attributes:

• args: “normal” access, i.e. the given names are directly exposed as keys.

• flags: “flaglike” access, i.e. the given names are translated into CLI flags, e.g. "foo" is accessible
via flags['--foo'].

74 Chapter 4. API

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None

Invoke

• inverse_flags: similar to flags but containing only the “inverse” versions of boolean flags which
default to True. This allows the parser to track e.g. --no-myflag and turn it into a False value for the
myflag Argument.

New in version 1.0.

property as_kwargs: Dict[str, Any]
This context’s arguments’ values keyed by their .name attribute.

Results in a dict suitable for use in Python contexts, where e.g. an arg named foo-bar becomes accessible
as foo_bar.

New in version 1.0.

flag_names()→ Tuple[str, ...]
Similar to help_tuples but returns flag names only, no helpstrs.

Specifically, all flag names, flattened, in rough order.

New in version 1.0.

help_for(flag: str)→ Tuple[str, str]
Return 2-tuple of (flag-spec, help-string) for given flag.

New in version 1.0.

help_tuples()→ List[Tuple[str, Optional[str]]]
Return sorted iterable of help tuples for all member Arguments.

Sorts like so:

• General sort is alphanumerically

• Short flags win over long flags

• Arguments with only long flags and no short flags will come first.

• When an Argument has multiple long or short flags, it will sort using the most favorable (lowest al-
phabetically) candidate.

This will result in a help list like so:

--alpha, --zeta # 'alpha' wins
--beta
-a, --query # short flag wins
-b, --argh
-c

New in version 1.0.

invoke.parser.context.flag_key(arg: invoke.parser.argument.Argument)→ List[Union[int, str]]
Obtain useful key list-of-ints for sorting CLI flags.

New in version 1.0.

class invoke.parser.argument.Argument(name: Optional[str] = None, names: Iterable[str] = (), kind: Any
= <class 'str'>, default: Optional[Any] = None, help:
Optional[str] = None, positional: bool = False, optional: bool =
False, incrementable: bool = False, attr_name: Optional[str] =
None)

A command-line argument/flag.

Parameters
• name – Syntactic sugar for names=[<name>]. Giving both name and names is invalid.

4.8. parser 75

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str

Invoke

• names – List of valid identifiers for this argument. For example, a “help” argument may be
defined with a name list of ['-h', '--help'].

• kind – Type factory & parser hint. E.g. int will turn the default text value parsed, into a
Python integer; and bool will tell the parser not to expect an actual value but to treat the
argument as a toggle/flag.

• default – Default value made available to the parser if no value is given on the command
line.

• help – Help text, intended for use with --help.

• positional – Whether or not this argument’s value may be given positionally. When False
(default) arguments must be explicitly named.

• optional – Whether or not this (non-bool) argument requires a value.

• incrementable – Whether or not this (int) argument is to be incremented instead of over-
written/assigned to.

• attr_name – A Python identifier/attribute friendly name, typically filled in with the under-
scored version when name/names contain dashes.

New in version 1.0.

__init__(name: Optional[str] = None, names: Iterable[str] = (), kind: Any = <class 'str'>, default:
Optional[Any] = None, help: Optional[str] = None, positional: bool = False, optional: bool =
False, incrementable: bool = False, attr_name: Optional[str] = None)→ None

__repr__()→ str
Return repr(self).

__weakref__
list of weak references to the object (if defined)

property got_value: bool
Returns whether the argument was ever given a (non-default) value.

For most argument kinds, this simply checks whether the internally stored value is non-None; for others,
such as list kinds, different checks may be used.

New in version 1.3.

property name: Optional[str]
The canonical attribute-friendly name for this argument.

Will be attr_name (if given to constructor) or the first name in names otherwise.

New in version 1.0.

set_value(value: Any, cast: bool = True)→ None
Actual explicit value-setting API call.

Sets self.raw_value to value directly.

Sets self.value to self.kind(value), unless:

• cast=False, in which case the raw value is also used.

• self.kind==list, in which case the value is appended to self.value instead of cast & overwritten.

• self.incrementable==True, in which case the value is ignored and the current (assumed int) value
is simply incremented.

New in version 1.0.

76 Chapter 4. API

https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/constants.html#None

Invoke

4.9 program

class invoke.program.Program(version: Optional[str] = None, namespace: Optional[Collection] = None,
name: Optional[str] = None, binary: Optional[str] = None, loader_class:
Optional[Type[Loader]] = None, executor_class: Optional[Type[Executor]] =
None, config_class: Optional[Type[Config]] = None, binary_names:
Optional[List[str]] = None)

Manages top-level CLI invocation, typically via setup.py entrypoints.

Designed for distributing Invoke task collections as standalone programs, but also used internally to implement
the invoke program itself.

See also:
Reusing Invoke’s CLI module as a distinct binary for a tutorial/walkthrough of this functionality.

New in version 1.0.

__init__(version: Optional[str] = None, namespace: Optional[Collection] = None, name: Optional[str] =
None, binary: Optional[str] = None, loader_class: Optional[Type[Loader]] = None,
executor_class: Optional[Type[Executor]] = None, config_class: Optional[Type[Config]] = None,
binary_names: Optional[List[str]] = None)→ None

Create a new, parameterized Program instance.

Parameters
• version (str) – The program’s version, e.g. "0.1.0". Defaults to "unknown".

• namespace – A Collection to use as this program’s subcommands.

If None (the default), the program will behave like invoke, seeking a nearby task names-
pace with a Loader and exposing arguments such as --list and --collection for in-
specting or selecting specific namespaces.

If given a Collection object, will use it as if it had been handed to --collection. Will
also update the parser to remove references to tasks and task-related options, and display
the subcommands in --help output. The result will be a program that has a static set of
subcommands.

• name (str) – The program’s name, as displayed in --version output.

If None (default), is a capitalized version of the first word in the argv handed to run. For
example, when invoked from a binstub installed as foobar, it will default to Foobar.

• binary (str) – Descriptive lowercase binary name string used in help text.

For example, Invoke’s own internal value for this is inv[oke], denoting that it is installed
as both inv and invoke. As this is purely text intended for help display, it may be in
any format you wish, though it should match whatever you’ve put into your setup.py’s
console_scripts entry.

If None (default), uses the first word in argv verbatim (as with name above, except not
capitalized).

• binary_names – List of binary name strings, for use in completion scripts.

This list ensures that the shell completion scripts generated by
--print-completion-script instruct the shell to use that completion for all of
this program’s installed names.

For example, Invoke’s internal default for this is ["inv", "invoke"].

4.9. program 77

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Invoke

If None (the default), the first word in argv (in the invocation of
--print-completion-script) is used in a single-item list.

• loader_class – The Loader subclass to use when loading task collections.

Defaults to FilesystemLoader.

• executor_class – The Executor subclass to use when executing tasks.

Defaults to Executor; may also be overridden at runtime by the configuration system and
its tasks.executor_class setting (anytime that setting is not None).

• config_class – The Config subclass to use for the base config object.

Defaults to Config.

Changed in version 1.2: Added the binary_names argument.

__weakref__
list of weak references to the object (if defined)

property args: Lexicon
Obtain core program args from self.core parse result.

New in version 1.0.

property binary: str
Derive program’s help-oriented binary name(s) from init args & argv.

New in version 1.0.

property binary_names: List[str]
Derive program’s completion-oriented binary name(s) from args & argv.

New in version 1.2.

property called_as: str
Returns the program name we were actually called as.

Specifically, this is the (Python’s os module’s concept of a) basename of the first argument in the parsed
argument vector.

New in version 1.2.

core_args()→ List[invoke.parser.argument.Argument]
Return default core Argument objects, as a list.

New in version 1.0.

create_config()→ None
Instantiate a Config (or subclass, depending) for use in task exec.

This Config is fully usable but will lack runtime-derived data like project & runtime config files, CLI arg
overrides, etc. That data is added later in update_config. See Config docstring for lifecycle details.

Returns None; sets self.config instead.

New in version 1.0.

execute()→ None
Hand off data & tasks-to-execute specification to an Executor.

Note: Client code just wanting a different Executor subclass can just set executor_class in __init__,
or override tasks.executor_class anywhere in the config system (which may allow you to avoid using

78 Chapter 4. API

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/constants.html#None

Invoke

a custom Program entirely).

New in version 1.0.

property initial_context: invoke.parser.context.ParserContext
The initial parser context, aka core program flags.

The specific arguments contained therein will differ depending on whether a bundled namespace was spec-
ified in __init__.

New in version 1.0.

load_collection()→ None
Load a task collection based on parsed core args, or die trying.

New in version 1.0.

property name: str
Derive program’s human-readable name based on binary.

New in version 1.0.

normalize_argv(argv: Optional[List[str]])→ None
Massages argv into a useful list of strings.

If None (the default), uses sys.argv.

If a non-string iterable, uses that in place of sys.argv.

If a string, performs a str.split and then executes with the result. (This is mostly a convenience; when
in doubt, use a list.)

Sets self.argv to the result.

New in version 1.0.

parse_cleanup()→ None
Post-parsing, pre-execution steps such as –help, –list, etc.

New in version 1.0.

parse_collection()→ None
Load a tasks collection & project-level config.

New in version 1.0.

parse_core_args()→ None
Filter out core args, leaving any tasks or their args for later.

Sets self.core to the ParseResult from this step.

New in version 1.0.

parse_tasks()→ None
Parse leftover args, which are typically tasks & per-task args.

Sets self.parser to the parser used, self.tasks to the parsed per-task contexts, and self.
core_via_tasks to a context holding any core flags seen within the task contexts.

Also modifies self.core to include the data from core_via_tasks (so that it correctly reflects any
supplied core flags regardless of where they appeared).

New in version 1.0.

4.9. program 79

https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/sys.html#sys.argv
https://docs.python.org/2.7/library/sys.html#sys.argv
https://docs.python.org/2.7/library/stdtypes.html#str.split
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/constants.html#None

Invoke

print_columns(tuples: Sequence[Tuple[str, Optional[str]]])→ None
Print tabbed columns from (name, help) tuples.

Useful for listing tasks + docstrings, flags + help strings, etc.

New in version 1.0.

print_task_help(name: str)→ None
Print help for a specific task, e.g. inv --help <taskname>.

New in version 1.0.

run(argv: Optional[List[str]] = None, exit: bool = True)→ None
Execute main CLI logic, based on argv.

Parameters
• argv – The arguments to execute against. May be None, a list of strings, or a string. See
normalize_argv for details.

• exit (bool) – When False (default: True), will ignore ParseError, Exit and Failure
exceptions, which otherwise trigger calls to sys.exit.

Note: This is mostly a concession to testing. If you’re setting this to False in a production
setting, you should probably be using Executor and friends directly instead!

New in version 1.0.

task_args()→ List[invoke.parser.argument.Argument]
Return default task-related Argument objects, as a list.

These are only added to the core args in “task runner” mode (the default for invoke itself) - they are omitted
when the constructor is given a non-empty namespace argument (“bundled namespace” mode).

New in version 1.0.

update_config(merge: bool = True)→ None
Update the previously instantiated Config with parsed data.

For example, this is how --echo is able to override the default config value for run.echo.

Parameters merge (bool) – Whether to merge at the end, or defer. Primarily useful for sub-
classers. Default: True.

New in version 1.0.

4.10 runners

class invoke.runners.Runner(context: Context)
Partially-abstract core command-running API.

This class is not usable by itself and must be subclassed, implementing a number of methods such as start,
wait and returncode. For a subclass implementation example, see the source code for Local.

New in version 1.0.

__init__(context: Context)→ None
Create a new runner with a handle on some Context.

80 Chapter 4. API

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/sys.html#sys.exit
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/constants.html#None

Invoke

Parameters context – a Context instance, used to transmit default options and provide access
to other contextualized information (e.g. a remote-oriented Runner might want a Context
subclass holding info about hostnames and ports.)

Note: The Context given to Runner instances must contain default config values for the
Runner class in question. At a minimum, this means values for each of the default Runner.
run keyword arguments such as echo and warn.

Raises exceptions.ValueError – if not all expected default values are found in context.

context
The Context given to the same-named argument of __init__.

program_finished
A threading.Event signaling program completion.

Typically set after wait returns. Some IO mechanisms rely on this to know when to exit an infinite read
loop.

read_chunk_size = 1000
How many bytes (at maximum) to read per iteration of stream reads.

input_sleep = 0.01
How many seconds to sleep on each iteration of the stdin read loop and other otherwise-fast loops.

warned_about_pty_fallback
Whether pty fallback warning has been emitted.

watchers: List[StreamWatcher]
A list of StreamWatcher instances for use by respond . Is filled in at runtime by run.

run(command: str, **kwargs: Any)→ Optional[invoke.runners.Result]
Execute command, returning an instance of Result once complete.

By default, this method is synchronous (it only returns once the subprocess has completed), and allows
interactive keyboard communication with the subprocess.

It can instead behave asynchronously (returning early & requiring interaction with the resulting object
to manage subprocess lifecycle) if you specify asynchronous=True. Furthermore, you can completely
disassociate the subprocess from Invoke’s control (allowing it to persist on its own after Python exits) by
saying disown=True. See the per-kwarg docs below for details on both of these.

Note: All kwargs will default to the values found in this instance’s context attribute, specifically in its
configuration’s run subtree (e.g. run.echo provides the default value for the echo keyword, etc). The
base default values are described in the parameter list below.

Parameters
• command (str) – The shell command to execute.

• asynchronous (bool) – When set to True (default False), enables asynchronous behav-
ior, as follows:

– Connections to the controlling terminal are disabled, meaning you will not see the sub-
process output and it will not respond to your keyboard input - similar to hide=True
and in_stream=False (though explicitly given (out|err|in)_stream file-like ob-
jects will still be honored as normal).

4.10. runners 81

https://docs.python.org/2.7/library/exceptions.html#exceptions.ValueError
https://docs.python.org/2.7/library/threading.html#threading.Event
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool

Invoke

– run returns immediately after starting the subprocess, and its return value becomes an
instance of Promise instead of Result.

– Promise objects are primarily useful for their join method, which blocks until the
subprocess exits (similar to threading APIs) and either returns a final Result or raises
an exception, just as a synchronous run would.

∗ As with threading and similar APIs, users of asynchronous=True should make sure
to join their Promise objects to prevent issues with interpreter shutdown.

∗ One easy way to handle such cleanup is to use the Promise as a context manager - it
will automatically join at the exit of the context block.

New in version 1.4.

• disown (bool) – When set to True (default False), returns immediately like
asynchronous=True, but does not perform any background work related to that sub-
process (it is completely ignored). This allows subprocesses using shell backgrounding
or similar techniques (e.g. trailing &, nohup) to persist beyond the lifetime of the Python
process running Invoke.

Note: If you’re unsure whether you want this or asynchronous, you probably want
asynchronous!

Specifically, disown=True has the following behaviors:

– The return value is None instead of a Result or subclass.

– No I/O worker threads are spun up, so you will have no access to the subprocess’ std-
out/stderr, your stdin will not be forwarded, (out|err|in)_stream will be ignored,
and features like watchers will not function.

– No exit code is checked for, so you will not receive any errors if the subprocess fails to
exit cleanly.

– pty=True may not function correctly (subprocesses may not run at all; this seems to be
a potential bug in Python’s pty.fork) unless your command line includes tools such as
nohup or (the shell builtin) disown.

New in version 1.4.

• dry (bool) – Whether to dry-run instead of truly invoking the given command. See --dry
(which flips this on globally) for details on this behavior.

New in version 1.3.

• echo (bool) – Controls whether run prints the command string to local stdout prior to
executing it. Default: False.

Note: hide=True will override echo=True if both are given.

• echo_format – A string, which when passed to Python’s inbuilt .format method, will
change the format of the output when run.echo is set to true.

Currently, only {command} is supported as a parameter.

Defaults to printing the full command string in ANSI-escaped bold.

• echo_stdin (bool) – Whether to write data from in_stream back to out_stream.

82 Chapter 4. API

https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool

Invoke

In other words, in normal interactive usage, this parameter controls whether Invoke mirrors
what you type back to your terminal.

By default (when None), this behavior is triggered by the following:

– Not using a pty to run the subcommand (i.e. pty=False), as ptys natively echo stdin to
stdout on their own;

– And when the controlling terminal of Invoke itself (as per in_stream) appears to be
a valid terminal device or TTY. (Specifically, when isatty yields a True result when
given in_stream.)

Note: This property tends to be False when piping another program’s output into an
Invoke session, or when running Invoke within another program (e.g. running Invoke
from itself).

If both of those properties are true, echoing will occur; if either is false, no echoing will be
performed.

When not None, this parameter will override that auto-detection and force, or disable, echo-
ing.

• encoding (str) – Override auto-detection of which encoding the subprocess is using for
its stdout/stderr streams (which defaults to the return value of default_encoding).

• err_stream – Same as out_stream, except for standard error, and defaulting to sys.
stderr.

• env (dict) – By default, subprocesses receive a copy of Invoke’s own environment (i.e.
os.environ). Supply a dict here to update that child environment.

For example, run('command', env={'PYTHONPATH': '/some/virtual/env/
maybe'}) would modify the PYTHONPATH env var, with the rest of the child’s env looking
identical to the parent.

See also:
replace_env for changing ‘update’ to ‘replace’.

• fallback (bool) – Controls auto-fallback behavior re: problems offering a pty when
pty=True. Whether this has any effect depends on the specific Runner subclass being
invoked. Default: True.

• hide – Allows the caller to disable run’s default behavior of copying the subprocess’ stdout
and stderr to the controlling terminal. Specify hide='out' (or 'stdout') to hide only
the stdout stream, hide='err' (or 'stderr') to hide only stderr, or hide='both' (or
True) to hide both streams.

The default value is None, meaning to print everything; False will also disable hiding.

Note: Stdout and stderr are always captured and stored in the Result object, regardless
of hide’s value.

Note: hide=True will also override echo=True if both are given (either as kwargs or via
config/CLI).

4.10. runners 83

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#bool

Invoke

• in_stream – A file-like stream object to used as the subprocess’ standard input. If None
(the default), sys.stdin will be used.

If False, will disable stdin mirroring entirely (though other functionality which writes to
the subprocess’ stdin, such as autoresponding, will still function.) Disabling stdin mirroring
can help when sys.stdin is a misbehaving non-stream object, such as under test harnesses
or headless command runners.

• out_stream – A file-like stream object to which the subprocess’ standard output should
be written. If None (the default), sys.stdout will be used.

• pty (bool) – By default, run connects directly to the invoked process and reads its std-
out/stderr streams. Some programs will buffer (or even behave) differently in this situation
compared to using an actual terminal or pseudoterminal (pty). To use a pty instead of the
default behavior, specify pty=True.

Warning: Due to their nature, ptys have a single output stream, so the ability to
tell stdout apart from stderr is not possible when pty=True. As such, all output will
appear on out_stream (see below) and be captured into the stdout result attribute.
err_stream and stderr will always be empty when pty=True.

• replace_env (bool) – When True, causes the subprocess to receive the dictionary given
to env as its entire shell environment, instead of updating a copy of os.environ (which
is the default behavior). Default: False.

• shell (str) – Which shell binary to use. Default: /bin/bash (on Unix; COMSPEC or
cmd.exe on Windows.)

• timeout – Cause the runner to submit an interrupt to the subprocess and raise
CommandTimedOut, if the command takes longer than timeout seconds to execute. De-
faults to None, meaning no timeout.

New in version 1.3.

• warn (bool) – Whether to warn and continue, instead of raising UnexpectedExit, when
the executed command exits with a nonzero status. Default: False.

Note: This setting has no effect on exceptions, which will still be raised, typically bundled
in ThreadException objects if they were raised by the IO worker threads.

Similarly, WatcherError exceptions raised by StreamWatcher instances will also ignore
this setting, and will usually be bundled inside Failure objects (in order to preserve the
execution context).

Ditto CommandTimedOut - basically, anything that prevents a command from actually get-
ting to “exited with an exit code” ignores this flag.

• watchers – A list of StreamWatcher instances which will be used to scan the program’s
stdout or stderr and may write into its stdin (typically bytes objects) in response to
patterns or other heuristics.

See Automatically responding to program output for details on this functionality.

Default: [].

Returns Result, or a subclass thereof.

Raises UnexpectedExit, if the command exited nonzero and warn was False.

84 Chapter 4. API

https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool

Invoke

Raises Failure, if the command didn’t even exit cleanly, e.g. if a StreamWatcher raised
WatcherError.

Raises ThreadException (if the background I/O threads encountered exceptions other than
WatcherError).

New in version 1.0.

make_promise()→ invoke.runners.Promise
Return a Promise allowing async control of the rest of lifecycle.

New in version 1.4.

create_io_threads()→ Tuple[Dict[Callable, invoke.util.ExceptionHandlingThread], List[str], List[str]]
Create and return a dictionary of IO thread worker objects.

Caller is expected to handle persisting and/or starting the wrapped threads.

generate_result(**kwargs: Any)→ invoke.runners.Result
Create & return a suitable Result instance from the given kwargs.

Subclasses may wish to override this in order to manipulate things or generate a Result subclass (e.g.
ones containing additional metadata besides the default).

New in version 1.0.

read_proc_output(reader: Callable)→ Generator[str, None, None]
Iteratively read & decode bytes from a subprocess’ out/err stream.

Parameters reader – A literal reader function/partial, wrapping the actual stream object in
question, which takes a number of bytes to read, and returns that many bytes (or None).

reader should be a reference to either read_proc_stdout or read_proc_stderr,
which perform the actual, platform/library specific read calls.

Returns
A generator yielding strings.

Specifically, each resulting string is the result of decoding read_chunk_size bytes read
from the subprocess’ out/err stream.

New in version 1.0.

write_our_output(stream: IO, string: str)→ None
Write string to stream.

Also calls .flush() on stream to ensure that real terminal streams don’t buffer.

Parameters
• stream – A file-like stream object, mapping to the out_stream or err_stream pa-

rameters of run.

• string – A Unicode string object.

Returns None.
New in version 1.0.

handle_stdout(buffer_: List[str], hide: bool, output: IO)→ None
Read process’ stdout, storing into a buffer & printing/parsing.

Intended for use as a thread target. Only terminates when all stdout from the subprocess has been read.

Parameters

4.10. runners 85

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/constants.html#None

Invoke

• buffer – The capture buffer shared with the main thread.

• hide (bool) – Whether or not to replay data into output.

• output – Output stream (file-like object) to write data into when not hiding.

Returns None.
New in version 1.0.

handle_stderr(buffer_: List[str], hide: bool, output: IO)→ None
Read process’ stderr, storing into a buffer & printing/parsing.

Identical to handle_stdout except for the stream read from; see its docstring for API details.

New in version 1.0.

read_our_stdin(input_: IO)→ Optional[str]
Read & decode bytes from a local stdin stream.

Parameters input – Actual stream object to read from. Maps to in_stream in run, so will
often be sys.stdin, but might be any stream-like object.

Returns A Unicode string, the result of decoding the read bytes (this might be the empty string
if the pipe has closed/reached EOF); or None if stdin wasn’t ready for reading yet.

New in version 1.0.

handle_stdin(input_: IO, output: IO, echo: bool = False)→ None
Read local stdin, copying into process’ stdin as necessary.

Intended for use as a thread target.

Note: Because real terminal stdin streams have no well-defined “end”, if such a stream is detected (based
on existence of a callable .fileno()) this method will wait until program_finished is set, before
terminating.

When the stream doesn’t appear to be from a terminal, the same semantics as handle_stdout are used -
the stream is simply read() from until it returns an empty value.

Parameters
• input – Stream (file-like object) from which to read.

• output – Stream (file-like object) to which echoing may occur.

• echo (bool) – User override option for stdin-stdout echoing.

Returns None.

New in version 1.0.

should_echo_stdin(input_: IO, output: IO)→ bool
Determine whether data read from input_ should echo to output.

Used by handle_stdin; tests attributes of input_ and output.

Parameters
• input – Input stream (file-like object).

• output – Output stream (file-like object).

Returns A bool.

86 Chapter 4. API

https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool

Invoke

New in version 1.0.

respond(buffer_: List[str])→ None
Write to the program’s stdin in response to patterns in buffer_.

The patterns and responses are driven by the StreamWatcher instances from the watchers kwarg of run
- see Automatically responding to program output for a conceptual overview.

Parameters buffer – The capture buffer for this thread’s particular IO stream.

Returns None.
New in version 1.0.

generate_env(env: Dict[str, Any], replace_env: bool)→ Dict[str, Any]
Return a suitable environment dict based on user input & behavior.

Parameters
• env (dict) – Dict supplying overrides or full env, depending.

• replace_env (bool) – Whether env updates, or is used in place of, the value of
os.environ.

Returns A dictionary of shell environment vars.

New in version 1.0.

should_use_pty(pty: bool, fallback: bool)→ bool
Should execution attempt to use a pseudo-terminal?

Parameters
• pty (bool) – Whether the user explicitly asked for a pty.

• fallback (bool) – Whether falling back to non-pty execution should be allowed, in
situations where pty=True but a pty could not be allocated.

New in version 1.0.

property has_dead_threads: bool
Detect whether any IO threads appear to have terminated unexpectedly.

Used during process-completion waiting (in wait) to ensure we don’t deadlock our child process if our
IO processing threads have errored/died.

Returns True if any threads appear to have terminated with an exception, False otherwise.

New in version 1.0.

wait()→ None
Block until the running command appears to have exited.

Returns None.
New in version 1.0.

write_proc_stdin(data: str)→ None
Write encoded data to the running process’ stdin.

Parameters data – A Unicode string.

Returns None.
New in version 1.0.

4.10. runners 87

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/os.html#os.environ
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None

Invoke

decode(data: bytes)→ str
Decode some data bytes, returning Unicode.

New in version 1.0.

property process_is_finished: bool
Determine whether our subprocess has terminated.

Note: The implementation of this method should be nonblocking, as it is used within a query/poll loop.

Returns True if the subprocess has finished running, False otherwise.

New in version 1.0.

start(command: str, shell: str, env: Dict[str, Any])→ None
Initiate execution of command (via shell, with env).

Typically this means use of a forked subprocess or requesting start of execution on a remote system.

In most cases, this method will also set subclass-specific member variables used in other methods such as
wait and/or returncode.

Parameters
• command (str) – Command string to execute.

• shell (str) – Shell to use when executing command.

• env (dict) – Environment dict used to prep shell environment.

New in version 1.0.

start_timer(timeout: int)→ None
Start a timer to kill our subprocess after timeout seconds.

read_proc_stdout(num_bytes: int)→ Optional[bytes]
Read num_bytes from the running process’ stdout stream.

Parameters num_bytes (int) – Number of bytes to read at maximum.

Returns A string/bytes object.

New in version 1.0.

read_proc_stderr(num_bytes: int)→ Optional[bytes]
Read num_bytes from the running process’ stderr stream.

Parameters num_bytes (int) – Number of bytes to read at maximum.

Returns A string/bytes object.

New in version 1.0.

close_proc_stdin()→ None
Close running process’ stdin.

Returns None.
New in version 1.3.

default_encoding()→ str
Return a string naming the expected encoding of subprocess streams.

This return value should be suitable for use by encode/decode methods.

88 Chapter 4. API

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str

Invoke

New in version 1.0.

send_interrupt(interrupt: KeyboardInterrupt)→ None
Submit an interrupt signal to the running subprocess.

In almost all implementations, the default behavior is what will be desired: submit to the subprocess’ stdin
pipe. However, we leave this as a public method in case this default needs to be augmented or replaced.

Parameters interrupt – The locally-sourced KeyboardInterrupt causing the method call.

Returns None.
New in version 1.0.

returncode()→ Optional[int]
Return the numeric return/exit code resulting from command execution.

Returns int, if any reasonable return code could be determined, or None in corner cases where
that was not possible.

New in version 1.0.

stop()→ None
Perform final cleanup, if necessary.

This method is called within a finally clause inside the main run method. Depending on the subclass,
it may be a no-op, or it may do things such as close network connections or open files.

Returns None
New in version 1.0.

kill()→ None
Forcibly terminate the subprocess.

Typically only used by the timeout functionality.

This is often a “best-effort” attempt, e.g. remote subprocesses often must settle for simply shutting down
the local side of the network connection and hoping the remote end eventually gets the message.

property timed_out: bool
Returns True if the subprocess stopped because it timed out.

New in version 1.3.

__weakref__
list of weak references to the object (if defined)

class invoke.runners.Local(context: Context)
Execute a command on the local system in a subprocess.

Note: When Invoke itself is executed without a controlling terminal (e.g. when sys.stdin lacks a useful
fileno), it’s not possible to present a handle on our PTY to local subprocesses. In such situations, Local will
fallback to behaving as if pty=False (on the theory that degraded execution is better than none at all) as well
as printing a warning to stderr.

To disable this behavior, say fallback=False.

New in version 1.0.

__init__(context: Context)→ None
Create a new runner with a handle on some Context.

4.10. runners 89

https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/constants.html#None

Invoke

Parameters context – a Context instance, used to transmit default options and provide ac-
cess to other contextualized information (e.g. a remote-oriented Runner might want a
Context subclass holding info about hostnames and ports.)

Note: The Context given to Runner instances must contain default config values for
the Runner class in question. At a minimum, this means values for each of the default
Runner.run keyword arguments such as echo and warn.

Raises exceptions.ValueError – if not all expected default values are found in context.

should_use_pty(pty: bool = False, fallback: bool = True)→ bool
Should execution attempt to use a pseudo-terminal?

Parameters
• pty (bool) – Whether the user explicitly asked for a pty.

• fallback (bool) – Whether falling back to non-pty execution should be allowed, in
situations where pty=True but a pty could not be allocated.

New in version 1.0.

read_proc_stdout(num_bytes: int)→ Optional[bytes]
Read num_bytes from the running process’ stdout stream.

Parameters num_bytes (int) – Number of bytes to read at maximum.

Returns A string/bytes object.

New in version 1.0.

read_proc_stderr(num_bytes: int)→ Optional[bytes]
Read num_bytes from the running process’ stderr stream.

Parameters num_bytes (int) – Number of bytes to read at maximum.

Returns A string/bytes object.

New in version 1.0.

close_proc_stdin()→ None
Close running process’ stdin.

Returns None.
New in version 1.3.

start(command: str, shell: str, env: Dict[str, Any])→ None
Initiate execution of command (via shell, with env).

Typically this means use of a forked subprocess or requesting start of execution on a remote system.

In most cases, this method will also set subclass-specific member variables used in other methods such as
wait and/or returncode.

Parameters
• command (str) – Command string to execute.

• shell (str) – Shell to use when executing command.

• env (dict) – Environment dict used to prep shell environment.

New in version 1.0.

90 Chapter 4. API

https://docs.python.org/2.7/library/exceptions.html#exceptions.ValueError
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict

Invoke

kill()→ None
Forcibly terminate the subprocess.

Typically only used by the timeout functionality.

This is often a “best-effort” attempt, e.g. remote subprocesses often must settle for simply shutting down
the local side of the network connection and hoping the remote end eventually gets the message.

property process_is_finished: bool
Determine whether our subprocess has terminated.

Note: The implementation of this method should be nonblocking, as it is used within a query/poll loop.

Returns True if the subprocess has finished running, False otherwise.

New in version 1.0.

returncode()→ Optional[int]
Return the numeric return/exit code resulting from command execution.

Returns int, if any reasonable return code could be determined, or None in corner cases where
that was not possible.

New in version 1.0.

stop()→ None
Perform final cleanup, if necessary.

This method is called within a finally clause inside the main run method. Depending on the subclass,
it may be a no-op, or it may do things such as close network connections or open files.

Returns None
New in version 1.0.

class invoke.runners.Result(stdout: str = '', stderr: str = '', encoding: Optional[str] = None, command: str =
'', shell: str = '', env: Optional[Dict[str, Any]] = None, exited: int = 0, pty: bool
= False, hide: Tuple[str, ...] = ())

A container for information about the result of a command execution.

All params are exposed as attributes of the same name and type.

Parameters
• stdout (str) – The subprocess’ standard output.

• stderr (str) – Same as stdout but containing standard error (unless the process was
invoked via a pty, in which case it will be empty; see Runner.run.)

• encoding (str) – The string encoding used by the local shell environment.

• command (str) – The command which was executed.

• shell (str) – The shell binary used for execution.

• env (dict) – The shell environment used for execution. (Default is the empty dict, {},
not None as displayed in the signature.)

• exited (int) – An integer representing the subprocess’ exit/return code.

4.10. runners 91

https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#int

Invoke

Note: This may be None in situations where the subprocess did not run to completion,
such as when auto-responding failed or a timeout was reached.

• pty (bool) – A boolean describing whether the subprocess was invoked with a pty or not;
see Runner.run.

• hide (tuple) – A tuple of stream names (none, one or both of ('stdout', 'stderr'))
which were hidden from the user when the generating command executed; this is a nor-
malized value derived from the hide parameter of Runner.run.

For example, run('command', hide='stdout') will yield a Result where result.
hide == ('stdout',); hide=True or hide='both' results in result.hide ==
('stdout', 'stderr'); and hide=False (the default) generates result.hide ==
() (the empty tuple.)

Note: Result objects’ truth evaluation is equivalent to their ok attribute’s value. Therefore, quick-and-dirty
expressions like the following are possible:

if run("some shell command"):
do_something()

else:
handle_problem()

However, remember Zen of Python #2.

New in version 1.0.

__init__(stdout: str = '', stderr: str = '', encoding: Optional[str] = None, command: str = '', shell: str = '',
env: Optional[Dict[str, Any]] = None, exited: int = 0, pty: bool = False, hide: Tuple[str, ...] = ())

property return_code: int
An alias for .exited.

New in version 1.0.

__str__()→ str
Return str(self).

__repr__()→ str
Return repr(self).

property ok: bool
A boolean equivalent to exited == 0.

New in version 1.0.

property failed: bool
The inverse of ok.

I.e., True if the program exited with a nonzero return code, and False otherwise.

New in version 1.0.

tail(stream: str, count: int = 10)→ str
Return the last count lines of stream, plus leading whitespace.

Parameters
• stream (str) – Name of some captured stream attribute, eg "stdout".

92 Chapter 4. API

https://docs.python.org/2.7/library/functions.html#bool
http://zen-of-python.info/explicit-is-better-than-implicit.html#2
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Invoke

• count (int) – Number of lines to preserve.

New in version 1.3.

__weakref__
list of weak references to the object (if defined)

class invoke.runners.Promise(runner: invoke.runners.Runner)
A promise of some future Result, yielded from asynchronous execution.

This class’ primary API member is join; instances may also be used as context managers, which will automat-
ically call join when the block exits. In such cases, the context manager yields self.

Promise also exposes copies of many Result attributes, specifically those that derive from run kwargs and not
the result of command execution. For example, command is replicated here, but stdout is not.

New in version 1.4.

__init__(runner: invoke.runners.Runner)→ None
Create a new promise.

Parameters runner – An in-flight Runner instance making this promise.

Must already have started the subprocess and spun up IO threads.

join()→ invoke.runners.Result
Block until associated subprocess exits, returning/raising the result.

This acts identically to the end of a synchronously executed run, namely that:

• various background threads (such as IO workers) are themselves joined;

• if the subprocess exited normally, a Result is returned;

• in any other case (unforeseen exceptions, IO sub-thread ThreadException, Failure,
WatcherError) the relevant exception is raised here.

See run docs, or those of the relevant classes, for further details.

invoke.runners.default_encoding()→ str
Obtain apparent interpreter-local default text encoding.

Often used as a baseline in situations where we must use SOME encoding for unknown-but-presumably-text
bytes, and the user has not specified an override.

4.11 tasks

This module contains the core Task class & convenience decorators used to generate new tasks.

class invoke.tasks.Call(task: invoke.tasks.Task, called_as: Optional[str] = None, args: Optional[Tuple[str,
...]] = None, kwargs: Optional[Dict[str, Any]] = None)

Represents a call/execution of a Task with given (kw)args.

Similar to partialwith some added functionality (such as the delegation to the inner task, and optional tracking
of the name it’s being called by.)

New in version 1.0.

__eq__(other: object)→ bool
Return self==value.

__hash__ = None

4.11. tasks 93

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functools.html#functools.partial
https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#bool

Invoke

__init__(task: invoke.tasks.Task, called_as: Optional[str] = None, args: Optional[Tuple[str, ...]] = None,
kwargs: Optional[Dict[str, Any]] = None)→ None

Create a new Call object.

Parameters
• task – The Task object to be executed.

• called_as (str) – The name the task is being called as, e.g. if it was called by an
alias or other rebinding. Defaults to None, aka, the task was referred to by its default
name.

• args (tuple) – Positional arguments to call with, if any. Default: None.

• kwargs (dict) – Keyword arguments to call with, if any. Default: None.

__repr__()→ str
Return repr(self).

__weakref__
list of weak references to the object (if defined)

clone(into: Optional[Type[invoke.tasks.Call]] = None, with_: Optional[Dict[str, Any]] = None)→
invoke.tasks.Call

Return a standalone copy of this Call.

Useful when parameterizing task executions.

Parameters
• into – A subclass to generate instead of the current class. Optional.

• with (dict) – A dict of additional keyword arguments to use when creating the new
clone; typically used when cloning into a subclass that has extra args on top of the
base class. Optional.

Note: This dict is used to .update() the original object’s data (the return value from
its clone_data), so in the event of a conflict, values in with_ will win out.

New in version 1.0.

Changed in version 1.1: Added the with_ kwarg.

clone_data()→ Dict[str, Any]
Return keyword args suitable for cloning this call into another.

New in version 1.1.

make_context(config: Config)→ invoke.context.Context
Generate a Context appropriate for this call, with given config.

New in version 1.0.

class invoke.tasks.Task(body: Callable, name: Optional[str] = None, aliases: Iterable[str] = (), positional:
Optional[Iterable[str]] = None, optional: Iterable[str] = (), default: bool = False,
auto_shortflags: bool = True, help: Optional[Dict[str, Any]] = None, pre:
Optional[Union[List[str], str]] = None, post: Optional[Union[List[str], str]] = None,
autoprint: bool = False, iterable: Optional[Iterable[str]] = None, incrementable:
Optional[Iterable[str]] = None)

Core object representing an executable task & its argument specification.

94 Chapter 4. API

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Invoke

For the most part, this object is a clearinghouse for all of the data that may be supplied to the @task decorator,
such as name, aliases, positional etc, which appear as attributes.

In addition, instantiation copies some introspection/documentation friendly metadata off of the supplied body
object, such as __doc__, __name__ and __module__, allowing it to “appear as” body for most intents and
purposes.

New in version 1.0.

__call__(*args: Any, **kwargs: Any)→ invoke.tasks.T
Call self as a function.

__eq__(other: object)→ bool
Return self==value.

__hash__()→ int
Return hash(self).

__init__(body: Callable, name: Optional[str] = None, aliases: Iterable[str] = (), positional:
Optional[Iterable[str]] = None, optional: Iterable[str] = (), default: bool = False, auto_shortflags:
bool = True, help: Optional[Dict[str, Any]] = None, pre: Optional[Union[List[str], str]] = None,
post: Optional[Union[List[str], str]] = None, autoprint: bool = False, iterable:
Optional[Iterable[str]] = None, incrementable: Optional[Iterable[str]] = None)→ None

__repr__()→ str
Return repr(self).

__weakref__
list of weak references to the object (if defined)

argspec(body: Callable)→ Signature
Returns a modified inspect.Signature based on that of body.

Returns an inspect.Signaturematching that of body, but with the initial context argument
removed.

Raises TypeError – if the task lacks an initial positional Context argument.

New in version 1.0.

Changed in version 2.0: Changed from returning a two-tuple of (arg_names, spec_dict) to returning
an inspect.Signature.

get_arguments(ignore_unknown_help: Optional[bool] = None)→ List[invoke.parser.argument.Argument]
Return a list of Argument objects representing this task’s signature.

Parameters ignore_unknown_help (bool) – Controls whether unknown help flags cause
errors. See the config option by the same name for details.

New in version 1.0.

Changed in version 1.7: Added the ignore_unknown_help kwarg.

invoke.tasks.call(task: invoke.tasks.Task, *args: Any, **kwargs: Any)→ invoke.tasks.Call
Describes execution of a Task , typically with pre-supplied arguments.

Useful for setting up pre/post task invocations. It’s actually just a convenient wrapper around the Call class,
which may be used directly instead if desired.

For example, here’s two build-like tasks that both refer to a setup pre-task, one with no baked-in argument
values (and thus no need to use call), and one that toggles a boolean flag:

4.11. tasks 95

https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool

Invoke

@task
def setup(c, clean=False):

if clean:
c.run("rm -rf target")

... setup things here ...
c.run("tar czvf target.tgz target")

@task(pre=[setup])
def build(c):

c.run("build, accounting for leftover files...")

@task(pre=[call(setup, clean=True)])
def clean_build(c):

c.run("build, assuming clean slate...")

Please see the constructor docs for Call for details - this function’s args and kwargs map directly to the same
arguments as in that method.

New in version 1.0.

invoke.tasks.task(*args: Any, **kwargs: Any)→ Callable
Marks wrapped callable object as a valid Invoke task.

May be called without any parentheses if no extra options need to be specified. Otherwise, the following keyword
arguments are allowed in the parenthese’d form:

• name: Default name to use when binding to a Collection. Useful for avoiding Python namespace issues
(i.e. when the desired CLI level name can’t or shouldn’t be used as the Python level name.)

• aliases: Specify one or more aliases for this task, allowing it to be invoked as multiple different names.
For example, a task named mytask with a simple @task wrapper may only be invoked as "mytask".
Changing the decorator to be @task(aliases=['myothertask']) allows invocation as "mytask" or
"myothertask".

• positional: Iterable overriding the parser’s automatic “args with no default value are considered posi-
tional” behavior. If a list of arg names, no args besides those named in this iterable will be considered
positional. (This means that an empty list will force all arguments to be given as explicit flags.)

• optional: Iterable of argument names, declaring those args to have optional values. Such arguments may
be given as value-taking options (e.g. --my-arg=myvalue, wherein the task is given "myvalue") or as
Boolean flags (--my-arg, resulting in True).

• iterable: Iterable of argument names, declaring them to build iterable values.

• incrementable: Iterable of argument names, declaring them to increment their values.

• default: Boolean option specifying whether this task should be its collection’s default task (i.e. called if
the collection’s own name is given.)

• auto_shortflags: Whether or not to automatically create short flags from task options; defaults to True.

• help: Dict mapping argument names to their help strings. Will be displayed in --help output. For
arguments containing underscores (which are transformed into dashes on the CLI by default), either the
dashed or underscored version may be supplied here.

• pre, post: Lists of task objects to execute prior to, or after, the wrapped task whenever it is executed.

• autoprint: Boolean determining whether to automatically print this task’s return value to standard output
when invoked directly via the CLI. Defaults to False.

• klass: Class to instantiate/return. Defaults to Task .

96 Chapter 4. API

Invoke

If any non-keyword arguments are given, they are taken as the value of the pre kwarg for convenience’s sake. (It
is an error to give both *args and pre at the same time.)

New in version 1.0.

Changed in version 1.1: Added the klass keyword argument.

4.12 terminals

Utility functions surrounding terminal devices & I/O.

Much of this code performs platform-sensitive branching, e.g. Windows support.

This is its own module to abstract away what would otherwise be distracting logic-flow interruptions.

invoke.terminals.WINDOWS = False
Whether or not the current platform appears to be Windows in nature.

Note that Cygwin’s Python is actually close enough to “real” UNIXes that it doesn’t need (or want!) to use
PyWin32 – so we only test for literal Win32 setups (vanilla Python, ActiveState etc) here.

New in version 1.0.

invoke.terminals.bytes_to_read(input_: IO)→ int
Query stream input_ to see how many bytes may be readable.

Note: If we are unable to tell (e.g. if input_ isn’t a true file descriptor or isn’t a valid TTY) we fall back to
suggesting reading 1 byte only.

Parameters input – Input stream object (file-like).

Returns int number of bytes to read.

New in version 1.0.

invoke.terminals.character_buffered(stream: IO)→ Generator[None, None, None]
Force local terminal stream be character, not line, buffered.

Only applies to Unix-based systems; on Windows this is a no-op.

New in version 1.0.

invoke.terminals.pty_size()→ Tuple[int, int]
Determine current local pseudoterminal dimensions.

Returns A (num_cols, num_rows) two-tuple describing PTY size. Defaults to (80, 24) if
unable to get a sensible result dynamically.

New in version 1.0.

invoke.terminals.ready_for_reading(input_: IO)→ bool
Test input_ to determine whether a read action will succeed.

Parameters input – Input stream object (file-like).

Returns True if a read should succeed, False otherwise.

New in version 1.0.

4.12. terminals 97

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#bool

Invoke

invoke.terminals.stdin_is_foregrounded_tty(stream: IO)→ bool
Detect if given stdin stream seems to be in the foreground of a TTY.

Specifically, compares the current Python process group ID to that of the stream’s file descriptor to see if they
match; if they do not match, it is likely that the process has been placed in the background.

This is used as a test to determine whether we should manipulate an active stdin so it runs in a character-buffered
mode; touching the terminal in this way when the process is backgrounded, causes most shells to pause execution.

Note: Processes that aren’t attached to a terminal to begin with, will always fail this test, as it starts with “do
you have a real fileno?”.

New in version 1.0.

4.13 util

class invoke.util.ExceptionHandlingThread(**kwargs: Any)
Thread handler making it easier for parent to handle thread exceptions.

Based in part on Fabric 1’s ThreadHandler. See also Fabric GH issue #204.

When used directly, can be used in place of a regular threading.Thread. If subclassed, the subclass must do
one of:

• supply target to __init__

• define _run() instead of run()

This is because this thread’s entire point is to wrap behavior around the thread’s execution; subclasses could not
redefine run() without breaking that functionality.

New in version 1.0.

__init__(**kwargs: Any)→ None
Create a new exception-handling thread instance.

Takes all regular threading.Thread keyword arguments, via **kwargs for easier display of thread iden-
tity when raising captured exceptions.

__repr__()→ str
Return repr(self).

exception()→ Optional[invoke.util.ExceptionWrapper]
If an exception occurred, return an ExceptionWrapper around it.

Returns An ExceptionWrapper managing the result of sys.exc_info, if an exception was
raised during thread execution. If no exception occurred, returns None instead.

New in version 1.0.

property is_dead: bool
Returns True if not alive and has a stored exception.

Used to detect threads that have excepted & shut down.

New in version 1.0.

run()→ None
Method representing the thread’s activity.

98 Chapter 4. API

https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/threading.html#threading.Thread
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/sys.html#sys.exc_info
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/constants.html#None

Invoke

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

invoke.util.has_fileno(stream: IO)→ bool
Cleanly determine whether stream has a useful .fileno().

Note: This function helps determine if a given file-like object can be used with various terminal-oriented
modules and functions such as select, termios, and tty. For most of those, a fileno is all that is required;
they’ll function even if stream.isatty() is False.

Parameters stream – A file-like object.

Returns True if stream.fileno() returns an integer, False otherwise (this includes when
stream lacks a fileno method).

New in version 1.0.

invoke.util.helpline(obj: object)→ Optional[str]
Yield an object’s first docstring line, or None if there was no docstring.

New in version 1.0.

invoke.util.isatty(stream: IO)→ Union[bool, Any]
Cleanly determine whether stream is a TTY.

Specifically, first try calling stream.isatty(), and if that fails (e.g. due to lacking the method entirely) fallback
to os.isatty.

Note: Most of the time, we don’t actually care about true TTY-ness, but merely whether the stream seems
to have a fileno (per has_fileno). However, in some cases (notably the use of pty.fork to present a local
pseudoterminal) we need to tell if a given stream has a valid fileno but isn’t tied to an actual terminal. Thus, this
function.

Parameters stream – A file-like object.

Returns A boolean depending on the result of calling .isatty() and/or os.isatty.

New in version 1.0.

invoke.util.task_name_sort_key(name: str)→ Tuple[List[str], str]
Return key tuple for use sorting dotted task names, via e.g. sorted.

New in version 1.0.

class invoke.util.ExceptionWrapper(kwargs, type, value, traceback)
A namedtuple wrapping a thread-borne exception & that thread’s arguments. Mostly used as an intermediate be-
tween ExceptionHandlingThread (which preserves initial exceptions) and ThreadException (which holds
1..N such exceptions, as typically multiple threads are involved.)

4.13. util 99

https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/select.html#module-select
https://docs.python.org/2.7/library/termios.html#module-termios
https://docs.python.org/2.7/library/tty.html#module-tty
https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/os.html#os.isatty
https://docs.python.org/2.7/library/pty.html#pty.fork
https://docs.python.org/2.7/library/os.html#os.isatty
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#sorted

Invoke

4.14 watchers

class invoke.watchers.FailingResponder(pattern: str, response: str, sentinel: str)
Variant of Responder which is capable of detecting incorrect responses.

This class adds a sentinel parameter to __init__, and its submit will raise ResponseNotAccepted if it
detects that sentinel value in the stream.

New in version 1.0.

__init__(pattern: str, response: str, sentinel: str)→ None
Imprint this Responder with necessary parameters.

Parameters
• pattern – A raw string (e.g. r"\[sudo\] password for .*:") which will be

turned into a regular expression.

• response – The string to submit to the subprocess’ stdin when pattern is detected.

submit(stream: str)→ Generator[str, None, None]
Act on stream data, potentially returning responses.

Parameters stream (str) – All data read on this stream since the beginning of the session.

Returns An iterable of str (which may be empty).

New in version 1.0.

class invoke.watchers.Responder(pattern: str, response: str)
A parameterizable object that submits responses to specific patterns.

Commonly used to implement password auto-responds for things like sudo.

New in version 1.0.

__init__(pattern: str, response: str)→ None
Imprint this Responder with necessary parameters.

Parameters
• pattern – A raw string (e.g. r"\[sudo\] password for .*:") which will be

turned into a regular expression.

• response – The string to submit to the subprocess’ stdin when pattern is detected.

pattern_matches(stream: str, pattern: str, index_attr: str)→ Iterable[str]
Generic “search for pattern in stream, using index” behavior.

Used here and in some subclasses that want to track multiple patterns concurrently.

Parameters
• stream (str) – The same data passed to submit.

• pattern (str) – The pattern to search for.

• index_attr (str) – The name of the index attribute to use.

Returns An iterable of string matches.

New in version 1.0.

submit(stream: str)→ Generator[str, None, None]
Act on stream data, potentially returning responses.

Parameters stream (str) – All data read on this stream since the beginning of the session.

100 Chapter 4. API

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str

Invoke

Returns An iterable of str (which may be empty).

New in version 1.0.

class invoke.watchers.StreamWatcher
A class whose subclasses may act on seen stream data from subprocesses.

Subclasses must exhibit the following API; see Responder for a concrete example.

• __init__ is completely up to each subclass, though as usual, subclasses of subclasses should be careful
to make use of super where appropriate.

• submitmust accept the entire current contents of the stream being watched, as a string, and may optionally
return an iterable of strings (or act as a generator iterator, i.e. multiple calls to yield <string>), which
will each be written to the subprocess’ standard input.

Note: StreamWatcher subclasses exist in part to enable state tracking, such as detecting when a submitted
password didn’t work & erroring (or prompting a user, or etc). Such bookkeeping isn’t easily achievable with
simple callback functions.

Note: StreamWatcher subclasses threading.local so that its instances can be used to ‘watch’ both subpro-
cess stdout and stderr in separate threads.

New in version 1.0.

submit(stream: str)→ Iterable[str]
Act on stream data, potentially returning responses.

Parameters stream (str) – All data read on this stream since the beginning of the session.

Returns An iterable of str (which may be empty).

New in version 1.0.

4.14. watchers 101

https://docs.python.org/2.7/library/functions.html#super
https://docs.python.org/2.7/library/threading.html#threading.local
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Invoke

102 Chapter 4. API

PYTHON MODULE INDEX

i
invoke, 51
invoke.config, 54
invoke.context, 61
invoke.exceptions, 66
invoke.parser.argument, 75
invoke.parser.context, 74
invoke.parser.parser, 73
invoke.program, 77
invoke.runners, 80
invoke.tasks, 93
invoke.terminals, 97
invoke.util, 98
invoke.watchers, 100

103

Invoke

104 Python Module Index

INDEX

Symbols
__call__() (invoke.tasks.Task method), 95
__delattr__() (invoke.config.DataProxy method), 59
__eq__() (invoke.collection.Collection method), 51
__eq__() (invoke.config.DataProxy method), 59
__eq__() (invoke.tasks.Call method), 93
__eq__() (invoke.tasks.Task method), 95
__getitem__() (invoke.collection.Collection method),

51
__hash__ (invoke.collection.Collection attribute), 52
__hash__ (invoke.config.DataProxy attribute), 59
__hash__ (invoke.tasks.Call attribute), 93
__hash__() (invoke.tasks.Task method), 95
__init__() (invoke.config.Config method), 56
__init__() (invoke.context.Context method), 61
__init__() (invoke.context.MockContext method), 64
__init__() (invoke.exceptions.AuthFailure method), 67
__init__() (invoke.exceptions.CollectionNotFound

method), 67
__init__() (invoke.exceptions.CommandTimedOut

method), 67
__init__() (invoke.exceptions.Exit method), 67
__init__() (invoke.exceptions.Failure method), 68
__init__() (invoke.exceptions.ParseError method), 68
__init__() (invoke.exceptions.ThreadException

method), 69
__init__() (invoke.executor.Executor method), 70
__init__() (invoke.loader.FilesystemLoader method),

73
__init__() (invoke.loader.Loader method), 72
__init__() (invoke.parser.argument.Argument

method), 76
__init__() (invoke.parser.context.ParserContext

method), 74
__init__() (invoke.parser.parser.ParseResult method),

73
__init__() (invoke.parser.parser.Parser method), 73
__init__() (invoke.program.Program method), 77
__init__() (invoke.runners.Local method), 89
__init__() (invoke.runners.Promise method), 93
__init__() (invoke.runners.Result method), 92
__init__() (invoke.runners.Runner method), 80

__init__() (invoke.tasks.Call method), 93
__init__() (invoke.tasks.Task method), 95
__init__() (invoke.util.ExceptionHandlingThread

method), 98
__init__() (invoke.watchers.FailingResponder

method), 100
__init__() (invoke.watchers.Responder method), 100
__repr__() (invoke.collection.Collection method), 52
__repr__() (invoke.config.DataProxy method), 59
__repr__() (invoke.exceptions.CommandTimedOut

method), 67
__repr__() (invoke.exceptions.Failure method), 68
__repr__() (invoke.parser.argument.Argument

method), 76
__repr__() (invoke.parser.context.ParserContext

method), 74
__repr__() (invoke.runners.Result method), 92
__repr__() (invoke.tasks.Call method), 94
__repr__() (invoke.tasks.Task method), 95
__repr__() (invoke.util.ExceptionHandlingThread

method), 98
__setattr__() (invoke.config.DataProxy method), 59
__str__() (invoke.exceptions.AuthFailure method), 67
__str__() (invoke.exceptions.CommandTimedOut

method), 67
__str__() (invoke.exceptions.ThreadException

method), 69
__str__() (invoke.exceptions.UnexpectedExit method),

70
__str__() (invoke.runners.Result method), 92
__weakref__ (invoke.config.AmbiguousMergeError at-

tribute), 54
__weakref__ (invoke.config.DataProxy attribute), 59
__weakref__ (invoke.exceptions.AmbiguousEnvVar at-

tribute), 66
__weakref__ (invoke.exceptions.CollectionNotFound at-

tribute), 67
__weakref__ (invoke.exceptions.Exit attribute), 67
__weakref__ (invoke.exceptions.Failure attribute), 68
__weakref__ (invoke.exceptions.ParseError attribute),

68
__weakref__ (invoke.exceptions.PlatformError at-

105

Invoke

tribute), 68
__weakref__ (invoke.exceptions.SubprocessPipeError

attribute), 69
__weakref__ (invoke.exceptions.ThreadException

attribute), 69
__weakref__ (invoke.exceptions.UncastableEnvVar at-

tribute), 69
__weakref__ (invoke.exceptions.UnknownFileType at-

tribute), 70
__weakref__ (invoke.exceptions.UnpicklableConfigMember

attribute), 70
__weakref__ (invoke.exceptions.WatcherError at-

tribute), 70
__weakref__ (invoke.executor.Executor attribute), 71
__weakref__ (invoke.parser.argument.Argument at-

tribute), 76
__weakref__ (invoke.parser.context.ParserContext at-

tribute), 74
__weakref__ (invoke.parser.parser.ParseResult at-

tribute), 73
__weakref__ (invoke.parser.parser.Parser attribute), 74
__weakref__ (invoke.program.Program attribute), 78
__weakref__ (invoke.runners.Result attribute), 93
__weakref__ (invoke.runners.Runner attribute), 89
__weakref__ (invoke.tasks.Call attribute), 94
__weakref__ (invoke.tasks.Task attribute), 95
-D

command line option, 10
-F

command line option, 10
-T INT

command line option, 11
-V

command line option, 11
--collection=STRING

command line option, 10
--command-timeout=INT

command line option, 11
--complete

command line option, 9
--config

command line option, 10
--debug

command line option, 10
--dry

command line option, 10
--echo

command line option, 10
--help=STRING

command line option, 11
--hide=STRING

command line option, 10
--list=STRING

command line option, 11

--list-depth=INT
command line option, 10

--list-format=STRING
command line option, 10

--no-dedupe
command line option, 10

--print-completion-script=SHELL
command line option, 10

--prompt-for-sudo-password
command line option, 10

--pty
command line option, 11

--search-root=STRING
command line option, 11

--version
command line option, 11

--warn-only
command line option, 11

--write-pyc
command line option, 10

-c STRING
command line option, 10

-d
command line option, 10

-e
command line option, 10

-f
command line option, 10

-h STRING
command line option, 11

-l
command line option, 11

-p
command line option, 11

-r STRING
command line option, 11

-w
command line option, 11

A
add_arg() (invoke.parser.context.ParserContext

method), 74
add_collection() (invoke.collection.Collection

method), 52
add_task() (invoke.collection.Collection method), 52
AmbiguousEnvVar, 66
AmbiguousMergeError, 54
args (invoke.program.Program property), 78
argspec() (invoke.tasks.Task method), 95
Argument (class in invoke.parser.argument), 75
as_kwargs (invoke.parser.context.ParserContext prop-

erty), 75
AuthFailure, 66

106 Index

Invoke

B
binary (invoke.program.Program property), 78
binary_names (invoke.program.Program property), 78
bytes_to_read() (in module invoke.terminals), 97

C
Call (class in invoke.tasks), 93
call() (in module invoke.tasks), 95
called_as (invoke.program.Program property), 78
cd() (invoke.context.Context method), 61
character_buffered() (in module invoke.terminals),

97
clone() (invoke.config.Config method), 57
clone() (invoke.tasks.Call method), 94
clone_data() (invoke.tasks.Call method), 94
close_proc_stdin() (invoke.runners.Local method),

90
close_proc_stdin() (invoke.runners.Runner method),

88
Collection (class in invoke.collection), 51
CollectionNotFound, 67
command line option

-D, 10
-F, 10
-T INT, 11
-V, 11
--collection=STRING, 10
--command-timeout=INT, 11
--complete, 9
--config, 10
--debug, 10
--dry, 10
--echo, 10
--help=STRING, 11
--hide=STRING, 10
--list=STRING, 11
--list-depth=INT, 10
--list-format=STRING, 10
--no-dedupe, 10
--print-completion-script=SHELL, 10
--prompt-for-sudo-password, 10
--pty, 11
--search-root=STRING, 11
--version, 11
--warn-only, 11
--write-pyc, 10
-c STRING, 10
-d, 10
-e, 10
-f, 10
-h STRING, 11
-l, 11
-p, 11
-r STRING, 11

-w, 11
CommandTimedOut, 67
Config (class in invoke.config), 54
configuration() (invoke.collection.Collection

method), 52
configure() (invoke.collection.Collection method), 52
Context (class in invoke.context), 61
context (invoke.runners.Runner attribute), 81
copy_dict() (in module invoke.config), 60
core_args() (invoke.program.Program method), 78
create_config() (invoke.program.Program method),

78
create_io_threads() (invoke.runners.Runner

method), 85
cwd (invoke.context.Context property), 62

D
DataProxy (class in invoke.config), 59
decode() (invoke.runners.Runner method), 87
dedupe() (invoke.executor.Executor method), 71
default_encoding() (in module invoke.runners), 93
default_encoding() (invoke.runners.Runner method),

88

E
exception() (invoke.util.ExceptionHandlingThread

method), 98
ExceptionHandlingThread (class in invoke.util), 98
exceptions (invoke.exceptions.ThreadException at-

tribute), 69
ExceptionWrapper (class in invoke.util), 99
excise() (in module invoke.config), 60
execute() (invoke.executor.Executor method), 71
execute() (invoke.program.Program method), 78
Executor (class in invoke.executor), 70
Exit, 67
expand_calls() (invoke.executor.Executor method), 72

F
failed (invoke.runners.Result property), 92
FailingResponder (class in invoke.watchers), 100
Failure, 67
FilesystemLoader (class in invoke.loader), 72
find() (invoke.loader.FilesystemLoader method), 73
find() (invoke.loader.Loader method), 72
flag_key() (in module invoke.parser.context), 75
flag_names() (invoke.parser.context.ParserContext

method), 75
from_data() (invoke.config.DataProxy class method),

59
from_module() (invoke.collection.Collection class

method), 53

Index 107

Invoke

G
generate_env() (invoke.runners.Runner method), 87
generate_result() (invoke.runners.Runner method),

85
get_arguments() (invoke.tasks.Task method), 95
global_defaults() (invoke.config.Config static

method), 57
got_value (invoke.parser.argument.Argument prop-

erty), 76

H
handle_stderr() (invoke.runners.Runner method), 86
handle_stdin() (invoke.runners.Runner method), 86
handle_stdout() (invoke.runners.Runner method), 85
has_dead_threads (invoke.runners.Runner property),

87
has_fileno() (in module invoke.util), 99
help_for() (invoke.parser.context.ParserContext

method), 75
help_tuples() (invoke.parser.context.ParserContext

method), 75
helpline() (in module invoke.util), 99

I
initial_context (invoke.program.Program property),

79
input_sleep (invoke.runners.Runner attribute), 81
invoke

module, 51
invoke.config
module, 54

invoke.context
module, 61

invoke.exceptions
module, 66

invoke.parser.argument
module, 75

invoke.parser.context
module, 74

invoke.parser.parser
module, 73

invoke.program
module, 77

invoke.runners
module, 80

invoke.tasks
module, 93

invoke.terminals
module, 97

invoke.util
module, 98

invoke.watchers
module, 100

is_dead (invoke.util.ExceptionHandlingThread prop-
erty), 98

isatty() (in module invoke.util), 99

J
join() (invoke.runners.Promise method), 93

K
kill() (invoke.runners.Local method), 90
kill() (invoke.runners.Runner method), 89

L
load() (invoke.loader.Loader method), 72
load_collection() (invoke.config.Config method), 57
load_collection() (invoke.program.Program

method), 79
load_defaults() (invoke.config.Config method), 57
load_overrides() (invoke.config.Config method), 57
load_project() (invoke.config.Config method), 58
load_runtime() (invoke.config.Config method), 58
load_shell_env() (invoke.config.Config method), 58
load_system() (invoke.config.Config method), 58
load_user() (invoke.config.Config method), 59
Loader (class in invoke.loader), 72
Local (class in invoke.runners), 89

M
make_context() (invoke.tasks.Call method), 94
make_promise() (invoke.runners.Runner method), 85
merge() (invoke.config.Config method), 59
merge_dicts() (in module invoke.config), 60
MockContext (class in invoke.context), 64
module
invoke, 51
invoke.config, 54
invoke.context, 61
invoke.exceptions, 66
invoke.parser.argument, 75
invoke.parser.context, 74
invoke.parser.parser, 73
invoke.program, 77
invoke.runners, 80
invoke.tasks, 93
invoke.terminals, 97
invoke.util, 98
invoke.watchers, 100

N
name (invoke.parser.argument.Argument property), 76
name (invoke.program.Program property), 79
normalize() (invoke.executor.Executor method), 72
normalize_argv() (invoke.program.Program method),

79

108 Index

Invoke

O
obliterate() (in module invoke.config), 60
ok (invoke.runners.Result property), 92

P
parse_argv() (invoke.parser.parser.Parser method), 74
parse_cleanup() (invoke.program.Program method),

79
parse_collection() (invoke.program.Program

method), 79
parse_core_args() (invoke.program.Program

method), 79
parse_tasks() (invoke.program.Program method), 79
ParseError, 68
Parser (class in invoke.parser.parser), 73
ParserContext (class in invoke.parser.context), 74
ParseResult (class in invoke.parser.parser), 73
pattern_matches() (invoke.watchers.Responder

method), 100
PlatformError, 68
prefix() (invoke.context.Context method), 62
print_columns() (invoke.program.Program method),

79
print_task_help() (invoke.program.Program

method), 80
process_is_finished (invoke.runners.Local prop-

erty), 91
process_is_finished (invoke.runners.Runner prop-

erty), 88
Program (class in invoke.program), 77
program_finished (invoke.runners.Runner attribute),

81
Promise (class in invoke.runners), 93
pty_size() (in module invoke.terminals), 97

R
read_chunk_size (invoke.runners.Runner attribute), 81
read_our_stdin() (invoke.runners.Runner method), 86
read_proc_output() (invoke.runners.Runner method),

85
read_proc_stderr() (invoke.runners.Local method),

90
read_proc_stderr() (invoke.runners.Runner method),

88
read_proc_stdout() (invoke.runners.Local method),

90
read_proc_stdout() (invoke.runners.Runner method),

88
ready_for_reading() (in module invoke.terminals), 97
respond() (invoke.runners.Runner method), 87
Responder (class in invoke.watchers), 100
ResponseNotAccepted, 68
Result (class in invoke.runners), 91

return_code (invoke.runners.Result property), 92
returncode() (invoke.runners.Local method), 91
returncode() (invoke.runners.Runner method), 89
run() (in module invoke), 51
run() (invoke.context.Context method), 62
run() (invoke.context.MockContext method), 65
run() (invoke.program.Program method), 80
run() (invoke.runners.Runner method), 81
run() (invoke.util.ExceptionHandlingThread method),

98
Runner (class in invoke.runners), 80

S
send_interrupt() (invoke.runners.Runner method), 89
serialized() (invoke.collection.Collection method), 53
set_project_location() (invoke.config.Config

method), 59
set_result_for() (invoke.context.MockContext

method), 65
set_runtime_path() (invoke.config.Config method),

59
set_value() (invoke.parser.argument.Argument

method), 76
should_echo_stdin() (invoke.runners.Runner

method), 86
should_use_pty() (invoke.runners.Local method), 90
should_use_pty() (invoke.runners.Runner method), 87
start() (invoke.runners.Local method), 90
start() (invoke.runners.Runner method), 88
start_timer() (invoke.runners.Runner method), 88
stdin_is_foregrounded_tty() (in module in-

voke.terminals), 97
stop() (invoke.runners.Local method), 91
stop() (invoke.runners.Runner method), 89
streams_for_display() (invoke.exceptions.Failure

method), 68
StreamWatcher (class in invoke.watchers), 101
subcollection_from_path() (in-

voke.collection.Collection method), 53
submit() (invoke.watchers.FailingResponder method),

100
submit() (invoke.watchers.Responder method), 100
submit() (invoke.watchers.StreamWatcher method), 101
SubprocessPipeError, 68
sudo() (in module invoke), 51
sudo() (invoke.context.Context method), 63
sudo() (invoke.context.MockContext method), 65

T
tail() (invoke.runners.Result method), 92
Task (class in invoke.tasks), 94
task() (in module invoke.tasks), 96
task_args() (invoke.program.Program method), 80
task_name_sort_key() (in module invoke.util), 99

Index 109

Invoke

task_names (invoke.collection.Collection property), 53
task_with_config() (invoke.collection.Collection

method), 54
ThreadException, 69
timed_out (invoke.runners.Runner property), 89
to_contexts() (invoke.collection.Collection method),

54
transform() (invoke.collection.Collection method), 54

U
UncastableEnvVar, 69
UnexpectedExit, 69
UnknownFileType, 70
UnpicklableConfigMember, 70
update_config() (invoke.program.Program method),

80

W
wait() (invoke.runners.Runner method), 87
warned_about_pty_fallback (invoke.runners.Runner

attribute), 81
WatcherError, 70
watchers (invoke.runners.Runner attribute), 81
WINDOWS (in module invoke.terminals), 97
write_our_output() (invoke.runners.Runner method),

85
write_proc_stdin() (invoke.runners.Runner method),

87

110 Index

	Getting started
	Getting started
	Defining and running task functions
	Task parameters
	Adding metadata via @task

	Listing tasks
	Running shell commands
	Aside: what exactly is this ‘context’ arg anyway?

	Declaring pre-tasks
	Creating namespaces

	The invoke CLI tool
	inv[oke] core usage
	Core options and flags
	Shell tab completion
	Generating a completion script
	Sourcing the script
	Utilizing tab completion itself

	Concepts
	Configuration
	Introduction
	The configuration hierarchy
	Default configuration values
	Configuration files
	Loading
	Format

	Environment variables
	Basic rules
	Type casting
	Nesting vs underscored names

	Collection-based configuration
	Example of real-world config use
	Setup
	Configuring via task collection
	Configuration overriding

	Invoking tasks
	Basic command line layout
	Task command-line arguments
	Type casting
	Per-task help / printing available flags
	Globbed short flags
	Optional flag values
	Resolving ambiguity

	Iterable flag values
	Incrementable flag values
	Dashes vs underscores in flag names
	Automatic Boolean inverse flags

	How tasks run
	Base case
	Pre- and post-tasks
	Recursive/chained pre/post-tasks
	Parameterizing pre/post-tasks

	Task deduplication
	Disabling deduplication

	Using Invoke as a library
	Reusing Invoke’s CLI module as a distinct binary
	Getting set up
	Creating a Program
	Specifying subcommands
	Modifying core parser arguments

	Customizing the configuration system’s defaults
	Changing filenames and/or env var prefix
	Modifying default config values

	Loading collections
	Task module discovery
	Configuring the loading process

	Constructing namespaces
	Starting out
	Naming your tasks
	Aliases
	Dashes vs underscores

	Nesting collections
	Importing modules as collections
	Default tasks
	Default subcollections

	Mix and match
	More shortcuts

	Testing Invoke-using codebases
	Subclass & modify Invoke ‘internals’
	Use MockContext
	Putting the Mock in MockContext
	Boolean mock results
	String mock results
	Regular expression command matching
	Repeated results

	Expect Results
	Avoid mocking dependency code paths altogether

	Automatically responding to program output
	Background
	Basic use

	API
	__init__
	collection
	config
	context
	exceptions
	executor
	loader
	parser
	program
	runners
	tasks
	terminals
	util
	watchers

	Python Module Index
	Index

